Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Milestones in Human-Machine Cooperation

04.12.2014

Robo-Mate Update

Just a little over a year has passed since BBC News ranked the Robo-Mate exoskeleton at No. 2,right after the announcement of the new iPhone, and major technical progress has been made on several fronts.


Enhanced Robo-Mate design concept

© ZHAW (Zürcher Hochschule für Angewandte Wissenschaften)

A key focus of the initial twelve months of the EU-funded Robo-Mate project was to define the various production processes of end-users from different industries (e.g. automotive, automotive components, dismantling, and scrap recycling). This has allowed the project consortium of 13 partners from academia and industry to identify their needs from both a worker and a business perspective.

One of the major achievements on the industrial end was detailing two specific use-cases for the exoskeleton with a potentially high impact for the end-user partners (CRF, COMPA and INDRA). The use-cases support one and two handed manipulation of objects up to 7.5kg and 15kg, respectively.

On the worker end, design experts, human factors specialists and end-users teamed-up and concentrated efforts on what workers need to more efficiently and safely perform tasks, particularly in heavy and repetitive lifting. The Robo-Mate exoskeleton design consists of a core, anthropomorphic trunk-module that reduces compression forces in the lower back and provides a base for arm and leg extensions of varying complexity.

These modules can be passive, partially or fully activated, and anthropomorphic, or not, depending on the required use. Furthermore, Robo-Mate will be outfitted with tag readers, radio-frequency tracking (RFID), or other work-piece identification systems, as well as the inclusion of heads-up displays and vision recognition to maximise direct interaction with the production process. Safety is tantamount; therefore, the system will ensure the highest possible level of safety, even in uncertain and dynamic manufacturing environments.

The next major project milestones going forward involve putting prototypes to work and evaluating them. To that end, in the first quarter of 2015, the Zurich University of Applied Science (ZHAW) and the Italian Institute of Technology (IIT) will produce and test the first subsystem prototypes.

At the same time, the Fraunhofer Institute for Industrial Engineering IAO is simulating the production processes of our end-users to ensure that Robo-Mate is used most effectively and to assess the impact on productivity and on ergonomics-driven workplace design. The coupling of the exoskeleton models to the software system Classic Jack of Siemens PLM software and the enhancement of Siemens Process Simulate with new manufacturing resources represent the innovative research activities performed by Fraunhofer IAO as well.

And of course, with the crux of the Robo-Mate project centred on user-friendly interactive human-robot cooperation in industrial environments, workers will play a significant role in this process. In the summer of 2015, representatives from selected industries will participate in a prototype workshop at one of the end-users’ facilities.

Overall, the project is effectively moving along and striding towards realising and impacting earmarked objectives in the industrial workplace related to safety and improved working conditions, greater production efficiency and higher productivity. Thanks to Robo-Mate, the interactive, safe and competitive factories of the future are coming ever closer.

Contact:
Hon.-Prof. Dr. Carmen Constantinescu
Digital Engineering

Fraunhofer IAO
Nobelstraße 12
70569 Stuttgart, Germany
Phone +49 711 970-2282
carmen.constantinescu@iao.fraunhofer.de


Weitere Informationen:

http://www.iao.fraunhofer.de/lang-en/business-areas/engineering-systems/1117-milestones-in-human-machine-cooperation.html

Juliane Segedi | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>