Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic Quantum Objects in a "Nano Egg-Box"

25.07.2017

Magnetic quantum objects in superconductors, so-called "fluxons", are particularly suitable for the storage and processing of data bits. Computer circuits based on fluxons could be operated with significantly higher speed and, at the same time, produce much less heat dissipation. Physicists around Wolfgang Lang at the University of Vienna and their colleagues at the Johannes-Kepler-University Linz have now succeeded in producing a "quantum egg-box" with a novel and simple method. They realized a stable and regular arrangement of hundreds of thousands of fluxons. The results appear in the new journal "Physical Review Applied" of the renowned "American Physical Society".

Speeding up data processing in computers goes hand in hand with a greater heat generation, which limits the performance of fast computers. Researchers have therefore long been trying to develop digital circuits based on superconductors – those puzzling materials that can transport electricity completely without loss when cooled below a certain critical temperature.


The principle of the fabrication of a "quantum egg-box" with a novel masked ion-beam technology. It allows to produce at the same time hundreds of thousands of traps for fluxons.

Copyright: Wolfgang Lang, University of Vienna

Magnetic quantum objects in superconductors

Inside a superconductor, a magnetic field can exist only in small quantized pieces, the fluxons. These are particularly suitable for the storage and processing of data bits. In a homogeneous superconductor, the fluxons are arranged in a hexagonal lattice. Using modern nanotechnology, researchers at the University of Vienna and the Johannes-Kepler-University Linz have now succeeded in building artificial traps for fluxons. By means of these traps the fluxons are forced into a predefined formation.

The importance of the non-equilibrium

Until now, the fluxons could only be observed in a thermodynamic equilibrium, i.e., in a uniform arrangement. "If we try to stack two eggs on top of each other in an egg-box and leave the adjacent pit empty, the egg would quickly roll down and we end up in the equilibrium state with exactly one egg in each pit," explains Wolfgang Lang from the University of Vienna.

From the viewpoint of data processing, however, the fully-filled egg-box contains little information and is therefore useless. It would be much more useful to place the eggs in a predefined pattern. In such a way, for example, the QR code, recognized by smartphones, could be realized in an egg-box – obviously a large amount of information.

At the nanoscale, the researchers have now made a major step forward in this direction by demonstrating for the first time a stable non-equilibrium state of fluxons in an array of more than 180,000 artificial traps.

Depending on the external magnetic field, the fluxons arrange themselves in terraced zones, in which each trap either captures no fluxon, exactly one, or even several fluxons. "Even after days, we have observed precisely the same arrangement of fluxons - a long-term stability that is rather surprising for a quantum system," says Georg Zechner of the University of Vienna, the lead author of the study.

Nanopatterning of superconductors by ion beams

These research results were enabled by a new method, developed by the physicists in Linz and Vienna together with the Vienna-based high-tech company IMS Nanofabrication AG. "Masked ion-beam irradiation allows for the fabrication of nanostructures in superconductors in a single step. It can be applied time-efficiently to large areas, can be ramped-up to an industrial scale and does not require any chemical processes," emphasizes Johannes D. Pedarnig of the Institute of Applied Physics at the Johannes-Kepler-University Linz.

Depending on the mask used, virtually any desired structure can be patterned into the superconductor. The scientists are now planning further experiments on more sophisticated nanostructures, which should demonstrate the systematic transfer of fluxons from one trap to the next. This could be another pioneering step towards the development of fast computer circuits based on fluxons.

Publication in "Physical Review Applied"
"Hysteretic vortex matching effects in high-Tc superconductors with nanoscale periodic pinning landscapes fabricated by He ion beam projection technique":
G. Zechner, F. Jausner, L. T. Haag, W. Lang, M. Dosmailov, M. A. Bodea, J. D. Pedarnig
Phys. Rev. Applied 8, 014021, 21 July 2017
doi: 10.1103/PhysRevApplied.8.014021
https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.8.014021

Scientific contact
ao. Univ.-Prof. Dr. Wolfgang Lang
Electronic Properties of Materials
Faculty of Physics
University of Vienna
1090 Vienna, Boltzmanngasse 5
M +43-664-602 77-514 24
wolfgang.lang(at)univie.ac.at
http://epm.univie.ac.at/

Press contact
Mag. Alexandra Frey
Press office, University of Vienna
Research and Teaching
1010 Vienna, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey@univie.ac.at

Alexandra Frey | Universität Wien

More articles from Information Technology:

nachricht Football through the eyes of a computer
14.06.2018 | Universität Konstanz

nachricht People recall information better through virtual reality, says new UMD study
14.06.2018 | University of Maryland

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Kidney tumor: Genetic trigger discovered

19.06.2018 | Life Sciences

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>