Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Machines learn how to learn

01.12.2015

On 30 November, the Max Planck ETH Center for Learning Systems was inaugurated in Tübingen

For humans, and for animals in general, it is normal; but machines have first to learn it: how to learn. To assist them in this process, the Max Planck Society and the ETH Zurich have set up the Max Planck ETH Center for Learning Systems. The researchers at the Center want to understand what the principles of learning are - in theory as well as in real machines. They want to get robots to act autonomously in an unknown, complex environment, among other things.


© Max Planck Institute for Intelligent Systems

The Center is an essential element in the development of the research field of learning and intelligent systems in Baden-Württemberg. On the basis of their cooperation, the MPG and the ETH provide scientific and personnel synergies and ensure that European research in this field remains competitive worldwide," said Max Planck President Martin Stratmann with a view to the inauguration ceremony on 30 November in Tübingen.

Baden-Württemberg’s Minister of Science, Research and the Arts, Theresia Bauer, the Swiss ambassador Christine Schraner Burgener, Max Planck President Martin Stratmann as well as ETH President Lino Guzzella were expected to attend.

Robots as disaster relief workers could save human rescue teams from having to undertake dangerous operations. And as nursing assistants they could help to cope with the problems of an ageing society with more and more people needing assistance. It will be a few years yet before they are able to undertake such tasks, however.

After all, two-legged robots today cannot move autonomously across an uneven floor – their motoric skills do not adapt quickly enough to unfamiliar terrain. If the machines learned as well as insects, not to mention human beings, a rocky path at least would no longer present a problem. The Max Planck ETH Center for Learning Systems aims to equip them with this ability to learn.

“We not only want to solve application problems, such as teaching a two-legged robot how to move on uneven ground,” says Bernhard Schölkopf, a Director at the Max Planck Institute for Intelligent Systems in Tübingen and one of two Co-Directors of the Center in addition to Thomas Hofmann from ETH Zurich. “We first want to understand what constitutes the intelligence of living beings which enables them to organize perception, learning and action and to act successfully in a complex environment.”

Artificial systems should learn like living beings

The researchers then want to use the insights from these fundamental investigations to further develop the methods of machine learning. These methods are already in use today to detect statistical regularities in large sets of data. But they are always limited to specific tasks. A method for reliably recognizing faces on images, for example, does not help a robot to practise moving steadily over any type of terrain.

“The learning ability of humans in particular is largely independent of the specific task, in contrast,” explains Schölkopf. “If we have a better understanding of how what has been learned can be transferred to different tasks, we could possibly develop artificial systems which learn like living beings.”

The general principles of learning should then not only impart intelligence to robots, but also to the software which analyzes large volumes of data, for example. Computers should no longer determine only statistical relationships in large sets of data, but also causal ones. They should autonomously estimate the effect of genetic modifications in data about the genetic code or protein interactions; these are causal relationships about which even medical professionals still have no knowledge to date.

The Max Planck ETH Center, which is the home of the collaboration between researchers from Tübingen, Stuttgart and Zürich, builds on an existing cooperation between the Max Planck Institute for Intelligent Systems and the ETH Zurich in the field of machine learning. Its objectives are not only scientific collaboration, but also the joint use of research infrastructure and the training of doctoral students. Joint summer schools and workshops will be organized via the Center. The Center will receive total funding of five million euros in the first five years, and this will be contributed equally by the Max Planck Society and the ETH Zurich.

Contact

Prof. Dr. Bernhard Schölkopf
Max Planck Institute for Intelligent Systems, Tübingen site, Tübingen
Phone: +49 7071 601-551

Fax: +49 7071 601-552

Email: bernhard.schoelkopf@tuebingen.mpg.de

 
Claudia Däfler
Max Planck Institute for Intelligent Systems, Stuttgart site, Stuttgart
Phone: +49 711 689-3094

Fax: +49 711 689-1932

Email: daefler@mg.mpg.de


Jens Eschert
Press and Public Relations

Administrative Headquarters of the Max Planck Society, München
Phone: +49 89 2108-1488

Email: eschert@gv.mpg.de

Prof. Dr. Bernhard Schölkopf | Max Planck Institute for Intelligent Systems, Tübingen site, Tübingen

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>