Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Machines learn how to learn

01.12.2015

On 30 November, the Max Planck ETH Center for Learning Systems was inaugurated in Tübingen

For humans, and for animals in general, it is normal; but machines have first to learn it: how to learn. To assist them in this process, the Max Planck Society and the ETH Zurich have set up the Max Planck ETH Center for Learning Systems. The researchers at the Center want to understand what the principles of learning are - in theory as well as in real machines. They want to get robots to act autonomously in an unknown, complex environment, among other things.


© Max Planck Institute for Intelligent Systems

The Center is an essential element in the development of the research field of learning and intelligent systems in Baden-Württemberg. On the basis of their cooperation, the MPG and the ETH provide scientific and personnel synergies and ensure that European research in this field remains competitive worldwide," said Max Planck President Martin Stratmann with a view to the inauguration ceremony on 30 November in Tübingen.

Baden-Württemberg’s Minister of Science, Research and the Arts, Theresia Bauer, the Swiss ambassador Christine Schraner Burgener, Max Planck President Martin Stratmann as well as ETH President Lino Guzzella were expected to attend.

Robots as disaster relief workers could save human rescue teams from having to undertake dangerous operations. And as nursing assistants they could help to cope with the problems of an ageing society with more and more people needing assistance. It will be a few years yet before they are able to undertake such tasks, however.

After all, two-legged robots today cannot move autonomously across an uneven floor – their motoric skills do not adapt quickly enough to unfamiliar terrain. If the machines learned as well as insects, not to mention human beings, a rocky path at least would no longer present a problem. The Max Planck ETH Center for Learning Systems aims to equip them with this ability to learn.

“We not only want to solve application problems, such as teaching a two-legged robot how to move on uneven ground,” says Bernhard Schölkopf, a Director at the Max Planck Institute for Intelligent Systems in Tübingen and one of two Co-Directors of the Center in addition to Thomas Hofmann from ETH Zurich. “We first want to understand what constitutes the intelligence of living beings which enables them to organize perception, learning and action and to act successfully in a complex environment.”

Artificial systems should learn like living beings

The researchers then want to use the insights from these fundamental investigations to further develop the methods of machine learning. These methods are already in use today to detect statistical regularities in large sets of data. But they are always limited to specific tasks. A method for reliably recognizing faces on images, for example, does not help a robot to practise moving steadily over any type of terrain.

“The learning ability of humans in particular is largely independent of the specific task, in contrast,” explains Schölkopf. “If we have a better understanding of how what has been learned can be transferred to different tasks, we could possibly develop artificial systems which learn like living beings.”

The general principles of learning should then not only impart intelligence to robots, but also to the software which analyzes large volumes of data, for example. Computers should no longer determine only statistical relationships in large sets of data, but also causal ones. They should autonomously estimate the effect of genetic modifications in data about the genetic code or protein interactions; these are causal relationships about which even medical professionals still have no knowledge to date.

The Max Planck ETH Center, which is the home of the collaboration between researchers from Tübingen, Stuttgart and Zürich, builds on an existing cooperation between the Max Planck Institute for Intelligent Systems and the ETH Zurich in the field of machine learning. Its objectives are not only scientific collaboration, but also the joint use of research infrastructure and the training of doctoral students. Joint summer schools and workshops will be organized via the Center. The Center will receive total funding of five million euros in the first five years, and this will be contributed equally by the Max Planck Society and the ETH Zurich.

Contact

Prof. Dr. Bernhard Schölkopf
Max Planck Institute for Intelligent Systems, Tübingen site, Tübingen
Phone: +49 7071 601-551

Fax: +49 7071 601-552

Email: bernhard.schoelkopf@tuebingen.mpg.de

 
Claudia Däfler
Max Planck Institute for Intelligent Systems, Stuttgart site, Stuttgart
Phone: +49 711 689-3094

Fax: +49 711 689-1932

Email: daefler@mg.mpg.de


Jens Eschert
Press and Public Relations

Administrative Headquarters of the Max Planck Society, München
Phone: +49 89 2108-1488

Email: eschert@gv.mpg.de

Prof. Dr. Bernhard Schölkopf | Max Planck Institute for Intelligent Systems, Tübingen site, Tübingen

More articles from Information Technology:

nachricht New epidemic management system combats monkeypox outbreak in Nigeria
15.12.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>