Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Machines learn how to learn


On 30 November, the Max Planck ETH Center for Learning Systems was inaugurated in Tübingen

For humans, and for animals in general, it is normal; but machines have first to learn it: how to learn. To assist them in this process, the Max Planck Society and the ETH Zurich have set up the Max Planck ETH Center for Learning Systems. The researchers at the Center want to understand what the principles of learning are - in theory as well as in real machines. They want to get robots to act autonomously in an unknown, complex environment, among other things.

© Max Planck Institute for Intelligent Systems

The Center is an essential element in the development of the research field of learning and intelligent systems in Baden-Württemberg. On the basis of their cooperation, the MPG and the ETH provide scientific and personnel synergies and ensure that European research in this field remains competitive worldwide," said Max Planck President Martin Stratmann with a view to the inauguration ceremony on 30 November in Tübingen.

Baden-Württemberg’s Minister of Science, Research and the Arts, Theresia Bauer, the Swiss ambassador Christine Schraner Burgener, Max Planck President Martin Stratmann as well as ETH President Lino Guzzella were expected to attend.

Robots as disaster relief workers could save human rescue teams from having to undertake dangerous operations. And as nursing assistants they could help to cope with the problems of an ageing society with more and more people needing assistance. It will be a few years yet before they are able to undertake such tasks, however.

After all, two-legged robots today cannot move autonomously across an uneven floor – their motoric skills do not adapt quickly enough to unfamiliar terrain. If the machines learned as well as insects, not to mention human beings, a rocky path at least would no longer present a problem. The Max Planck ETH Center for Learning Systems aims to equip them with this ability to learn.

“We not only want to solve application problems, such as teaching a two-legged robot how to move on uneven ground,” says Bernhard Schölkopf, a Director at the Max Planck Institute for Intelligent Systems in Tübingen and one of two Co-Directors of the Center in addition to Thomas Hofmann from ETH Zurich. “We first want to understand what constitutes the intelligence of living beings which enables them to organize perception, learning and action and to act successfully in a complex environment.”

Artificial systems should learn like living beings

The researchers then want to use the insights from these fundamental investigations to further develop the methods of machine learning. These methods are already in use today to detect statistical regularities in large sets of data. But they are always limited to specific tasks. A method for reliably recognizing faces on images, for example, does not help a robot to practise moving steadily over any type of terrain.

“The learning ability of humans in particular is largely independent of the specific task, in contrast,” explains Schölkopf. “If we have a better understanding of how what has been learned can be transferred to different tasks, we could possibly develop artificial systems which learn like living beings.”

The general principles of learning should then not only impart intelligence to robots, but also to the software which analyzes large volumes of data, for example. Computers should no longer determine only statistical relationships in large sets of data, but also causal ones. They should autonomously estimate the effect of genetic modifications in data about the genetic code or protein interactions; these are causal relationships about which even medical professionals still have no knowledge to date.

The Max Planck ETH Center, which is the home of the collaboration between researchers from Tübingen, Stuttgart and Zürich, builds on an existing cooperation between the Max Planck Institute for Intelligent Systems and the ETH Zurich in the field of machine learning. Its objectives are not only scientific collaboration, but also the joint use of research infrastructure and the training of doctoral students. Joint summer schools and workshops will be organized via the Center. The Center will receive total funding of five million euros in the first five years, and this will be contributed equally by the Max Planck Society and the ETH Zurich.


Prof. Dr. Bernhard Schölkopf
Max Planck Institute for Intelligent Systems, Tübingen site, Tübingen
Phone: +49 7071 601-551

Fax: +49 7071 601-552


Claudia Däfler
Max Planck Institute for Intelligent Systems, Stuttgart site, Stuttgart
Phone: +49 711 689-3094

Fax: +49 711 689-1932


Jens Eschert
Press and Public Relations

Administrative Headquarters of the Max Planck Society, München
Phone: +49 89 2108-1488


Prof. Dr. Bernhard Schölkopf | Max Planck Institute for Intelligent Systems, Tübingen site, Tübingen

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>