Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intelligent Algorithm Finds Available Carsharing Vehicles

22.01.2015

A new program will make it easier to combine different modes of transport. Siemens is developing a service for predicting the availability of carsharing vehicles at a given location at specific times.

The forecasting tool will be incorporated into the integrated SiMobility Connect mobility platform, which links carsharing firms, public transport companies, taxis, and bike-rental services.

Customers will then be able to use just one app to plan all segments of their trip and immediately see which combinations of transport modes are most advantageous at the moment or at a later time. The goal is to make the planning of inter-modal journeys (combinations of different forms of transport) more effective in order to combat growing traffic congestion in metropolitan areas. The new software also incorporates car-sharing users whose cars do not have a permanent parking space.

This "free floating carsharing" is a relatively new concept made possible by state-of-the-art information technology systems. The vehicles here do not have a permanent location but can instead be parked anywhere within a specific region.

They then report their position to a control center. Users can then check the current availability of vehicles in their area with an app and book a car right when they're ready to take it. This system offers the benefit of great flexibility because vehicles no longer have to be returned to a specific place at a set time. Planning is more difficult, however, because the cars cannot be booked well in advance and users cannot be sure whether a vehicle will be available at an acceptable distance from the desired location in the future.

Position of all carsharing vehicles in realtime

The researchers from Siemens Corporate Technology focused on this aspect. They developed an algorithm that uses realtime data on the position of all carsharing vehicles to predict where and when they will be available in the future. The process begins with historical data on the locations and availability of all vehicles over time.

When such data is monitored over a longer period, it becomes possible to recognize patterns in the distribution of vehicles, and these patterns can then be used to make forecasts. A range of external influencing factors, such as weather, holidays, vacation periods, and major events, can also be incorporated into the analyses. The distribution of cars will also be affected by measures taken by carsharing firms, such as the provision of additional vehicles.

In order to manage this huge amount of data, the researchers divide the area for which forecasts are to be made into individual grid cells. The algorithm uses the historical data on these cells to learn how to predict future vehicle distribution as accurately as possible. The learned model gets better as the amount of data increases over time, which means its predictions become increasingly accurate even when it's already operating.
If the algorithm is integrated into a trip-planning app, users can look up the probability that a vehicle will be available within a user-defined radius of their desired location, thus enabling them to better plan their journey. Carsharing firms benefit from the app because it helps them utilize their vehicles more effectively.

Press Picture: http://www.siemens.com/press/en/presspicture/innovationnews/2015/im2015010379coe...

Weitere Informationen:

http://www.siemens.com/innovationnews

Dr. Norbert Aschenbrenner | Siemens InnovationNews

More articles from Information Technology:

nachricht Smart Computers
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New bioimaging technique is fast and economical

21.08.2017 | Medical Engineering

Silk could improve sensitivity, flexibility of wearable body sensors

21.08.2017 | Materials Sciences

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>