Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intelligent Algorithm Finds Available Carsharing Vehicles

22.01.2015

A new program will make it easier to combine different modes of transport. Siemens is developing a service for predicting the availability of carsharing vehicles at a given location at specific times.

The forecasting tool will be incorporated into the integrated SiMobility Connect mobility platform, which links carsharing firms, public transport companies, taxis, and bike-rental services.

Customers will then be able to use just one app to plan all segments of their trip and immediately see which combinations of transport modes are most advantageous at the moment or at a later time. The goal is to make the planning of inter-modal journeys (combinations of different forms of transport) more effective in order to combat growing traffic congestion in metropolitan areas. The new software also incorporates car-sharing users whose cars do not have a permanent parking space.

This "free floating carsharing" is a relatively new concept made possible by state-of-the-art information technology systems. The vehicles here do not have a permanent location but can instead be parked anywhere within a specific region.

They then report their position to a control center. Users can then check the current availability of vehicles in their area with an app and book a car right when they're ready to take it. This system offers the benefit of great flexibility because vehicles no longer have to be returned to a specific place at a set time. Planning is more difficult, however, because the cars cannot be booked well in advance and users cannot be sure whether a vehicle will be available at an acceptable distance from the desired location in the future.

Position of all carsharing vehicles in realtime

The researchers from Siemens Corporate Technology focused on this aspect. They developed an algorithm that uses realtime data on the position of all carsharing vehicles to predict where and when they will be available in the future. The process begins with historical data on the locations and availability of all vehicles over time.

When such data is monitored over a longer period, it becomes possible to recognize patterns in the distribution of vehicles, and these patterns can then be used to make forecasts. A range of external influencing factors, such as weather, holidays, vacation periods, and major events, can also be incorporated into the analyses. The distribution of cars will also be affected by measures taken by carsharing firms, such as the provision of additional vehicles.

In order to manage this huge amount of data, the researchers divide the area for which forecasts are to be made into individual grid cells. The algorithm uses the historical data on these cells to learn how to predict future vehicle distribution as accurately as possible. The learned model gets better as the amount of data increases over time, which means its predictions become increasingly accurate even when it's already operating.
If the algorithm is integrated into a trip-planning app, users can look up the probability that a vehicle will be available within a user-defined radius of their desired location, thus enabling them to better plan their journey. Carsharing firms benefit from the app because it helps them utilize their vehicles more effectively.

Press Picture: http://www.siemens.com/press/en/presspicture/innovationnews/2015/im2015010379coe...

Weitere Informationen:

http://www.siemens.com/innovationnews

Dr. Norbert Aschenbrenner | Siemens InnovationNews

More articles from Information Technology:

nachricht Snake-inspired robot uses kirigami to move
22.02.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Camera technology in vehicles: Low-latency image data compression
22.02.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>