Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intelligent Algorithm Finds Available Carsharing Vehicles

22.01.2015

A new program will make it easier to combine different modes of transport. Siemens is developing a service for predicting the availability of carsharing vehicles at a given location at specific times.

The forecasting tool will be incorporated into the integrated SiMobility Connect mobility platform, which links carsharing firms, public transport companies, taxis, and bike-rental services.

Customers will then be able to use just one app to plan all segments of their trip and immediately see which combinations of transport modes are most advantageous at the moment or at a later time. The goal is to make the planning of inter-modal journeys (combinations of different forms of transport) more effective in order to combat growing traffic congestion in metropolitan areas. The new software also incorporates car-sharing users whose cars do not have a permanent parking space.

This "free floating carsharing" is a relatively new concept made possible by state-of-the-art information technology systems. The vehicles here do not have a permanent location but can instead be parked anywhere within a specific region.

They then report their position to a control center. Users can then check the current availability of vehicles in their area with an app and book a car right when they're ready to take it. This system offers the benefit of great flexibility because vehicles no longer have to be returned to a specific place at a set time. Planning is more difficult, however, because the cars cannot be booked well in advance and users cannot be sure whether a vehicle will be available at an acceptable distance from the desired location in the future.

Position of all carsharing vehicles in realtime

The researchers from Siemens Corporate Technology focused on this aspect. They developed an algorithm that uses realtime data on the position of all carsharing vehicles to predict where and when they will be available in the future. The process begins with historical data on the locations and availability of all vehicles over time.

When such data is monitored over a longer period, it becomes possible to recognize patterns in the distribution of vehicles, and these patterns can then be used to make forecasts. A range of external influencing factors, such as weather, holidays, vacation periods, and major events, can also be incorporated into the analyses. The distribution of cars will also be affected by measures taken by carsharing firms, such as the provision of additional vehicles.

In order to manage this huge amount of data, the researchers divide the area for which forecasts are to be made into individual grid cells. The algorithm uses the historical data on these cells to learn how to predict future vehicle distribution as accurately as possible. The learned model gets better as the amount of data increases over time, which means its predictions become increasingly accurate even when it's already operating.
If the algorithm is integrated into a trip-planning app, users can look up the probability that a vehicle will be available within a user-defined radius of their desired location, thus enabling them to better plan their journey. Carsharing firms benefit from the app because it helps them utilize their vehicles more effectively.

Press Picture: http://www.siemens.com/press/en/presspicture/innovationnews/2015/im2015010379coe...

Weitere Informationen:

http://www.siemens.com/innovationnews

Dr. Norbert Aschenbrenner | Siemens InnovationNews

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>