Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Innovative computer under scrutiny


D-Wave – a special computing machine with this name has been getting computer scientists and physicists talking for a number of years now.

The Canadian technology company of the same name is advertising the machine as a quantum computer. However, whether or not the machine does in fact use quantum effects is the subject of controversial debate amongst experts in the field. If it does, then this would make D-Wave the world's first commercially available quantum computer.

The company sold its system to illustrious customers, piquing the interest of the scientific community and of bloggers and journalists even further. For example, the very first machine was sold to the US arms manufacturer Lockheed Martin in 2011, which provided it to the University of Southern California in Los Angeles for tests. Last year, Google purchased the second machine. D-Wave can solve certain mathematical problems referred to as optimization problems by searching for and finding the state of lowest energy in a system. That is why the technology is of interest to this company.

Analogue device, not a quantum computer

But the question of whether or not D-Wave does in fact use quantum effects is not the only disputed aspect of the machine. Scientists and bloggers have also expressed doubt as to whether the machine can be accurately described as a computer at all. There are also different opinions regarding whether or not it can compute faster than a traditional computer. To find answers to these questions, Matthias Troyer, a professor at the Institute for Theoretical Physics at ETH Zurich, worked together with colleagues at the University of Southern California in Los Angeles and tested the system located there.

In their study, which has now been published in the journal Nature Physics, the Swiss-American team of researchers comes to a conclusion that is not clear cut. On the one hand, the scientists confirm that D-Wave does in fact use quantum effects. However, in other areas the researchers are more critical: "D-Wave is an analogue device, a prototype that can be used to solve optimization problems. It would be more accurate to describe it as a programmable quantum simulation experiment", says Professor Troyer, an internationally recognized expert in the field. "D-Wave is certainly not a universal quantum computer."

Quantum effects, but only momentarily

The researchers came to their conclusions by writing thousands of computing problems of differing complexity and solving each of these one thousand times on three systems: once on D-Wave and twice on a simulation programme for optimization problems that ran on a traditional computer. The simulation programme ran in two modes, where one took quantum effects into consideration and one did not. For each task, the scientists made a note of how often which system delivered the right solution. It turned out that D-Wave behaves in the same manner as the simulation that accounted for quantum effects but differently from the simulation that did not.

The scientists were amazed by this result, because the quantum effects of D-Wave are extremely short-lived, lasting only a few billionths of a second. Physicists describe this as coherence time. Because it generally takes around 500 times longer to solve an optimization problem, most experts assumed that the quantum effects with D-Wave simply could not play any role. And yet they do, as the results of the researchers have shown. "It appears that the quantum effects do not necessarily have to be coherent all of the time in order to have a significance", explains Troyer.

Not faster than a traditional computer

When one considers that research into quantum computers is carried out primarily because of the promise of hugely accelerated computing speeds, then another conclusion arrived at by the researchers is particularly significant, namely that D-Wave is not faster than a traditional computer.

The speed of D-Wave is the subject of intense debate amongst experts in the field, particularly since a publication by a computer scientist at Amherst College caused uproar in May of last year. According to the publication, depending on the computing problem, D-Wave is several thousands of times faster than a traditional computer. The researcher examined a version of D-Wave that almost corresponds to the current version, in existence for one year, with a computing capacity of 512 quantum bits (qubits). By contrast, the study carried out by the researchers from ETH Zurich is based on a predecessor version with 108 qubits.

"Not only have we demonstrated that a traditional computer is faster than the 108-bit version of D-Wave", Troyer responds. "We also used a traditional computer to solve the same problems that can be solved by the new 512-qubit version or hypothetically even higher-performing machines." When these findings are compared with those of the researcher from Amherst College, it becomes clear that D-Wave is consistently slower than a traditional computer for the tests performed. According to Troyer, the problem with the Amherst study is that it compared fast algorithms for D-Wave with slower algorithms for traditional computers. "We developed optimized algorithms for traditional computers. This allows us to match even the current 512-qubit version of D-Wave", explains Troyer. "Nobody knows at present whether a future quantum system like D-Wave with more qubits will offer any advantages over traditional systems. This is an important question, and we are currently using experiments on the 512-qubit machine to find the answer."

[Box:] Quantum annealing with D-Wave

An imperfect crystal structure made of metals or glass can be improved by heating the material until it glows and then cooling it in a controlled environment. In the hot material, the atoms have a certain freedom of movement and can realign in a more refined crystal lattice. This craft technique is thousands of years old and called annealing. A comparable method has also been in use for the past 30 years in computer science as an optimization process and is called annealing as well.

A typical question that can be answered using this method is the search for the lowest point of a landscape. To understand this better, it is possible to imagine a thought experiment where a sphere located in a landscape is subjected to jolts depending on temperature. At high temperatures, the sphere can hop around the entire landscape. The lower the temperature, the harder it is for the sphere to cross mountains. If an experiment is repeated several times, starting with high temperatures and slowly cooling, at the end of the experiments the sphere will frequently be found at the lowest point of the landscape.

When the D-Wave system solves an optimization problem, it uses a similar procedure. In addition, quantum physics and thus tunnel effects also have a role to play: the sphere (remaining with the above example) is also in a position to tunnel underneath the mountains in the landscape. With D-Wave, however, it is not spheres that are moving. Instead, individual superconducting circuits act as quantum simulations or artificial atoms. For this purpose, the system must be cooled to temperatures of almost absolute zero. The circuits simulate the spin of atoms. There is the spin "up" and the spin "down" as well as (because quantum physics plays a role) superposition of the spins, the state of "both up and down". In the D-Wave circuits, the spins are simulated by the direction in which the electrical current is flowing. Physicists call the optimization procedure used by D-Wave "quantum annealing".


Literature reference

Boixo S, Rønnow TF, Isakov SV, Wang Z, Wecker D, Lidar DA, Martinis JM, Troyer M: Evidence for quantum annealing with more than one hundred qubits. Nature Physics, 2014, 10: 218-224, doi: 10.1038/nphys2900 []

ETH News & Media Relations | EurekAlert!
Further information:

Further reports about: D-Wave ETH landscape quantum computer quantum effects temperatures

More articles from Information Technology:

nachricht Worldwide glacier information system to go
30.11.2015 | Universität Zürich

nachricht Laser process simulation available as app for first time
23.11.2015 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How Cells in the Developing Ear ‘Practice’ Hearing

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular chain of events that enables the cells to make “sounds” on their own, essentially “practicing” their ability to process sounds in the world around them.

The researchers, who describe their experiments in the Dec. 3 edition of the journal Cell, show how hair cells in the inner ear can be activated in the absence...

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

All Focus news of the innovation-report >>>



Event News

Urbanisation and migration from rural areas challenging agriculture in Eastern Europe

30.11.2015 | Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Latest News

Teamplay IT solution enables more efficient use of protocols

30.11.2015 | Trade Fair News

Greater efficiency and potentially reduced costs with new MRI applications

30.11.2015 | Trade Fair News

Modular syngo.plaza as a comprehensive solution – even for enterprise radiology

30.11.2015 | Trade Fair News

More VideoLinks >>>