Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Humans rely more on their subjective perception than on the reality - Surprising results

31.05.2017

Our brain fills in the gaps in our percepts – and as a result we treat the filled-in percepts as more reliable than reality itself. This seems to be the surprising outcome of the recently published research paper from the Osnabrueck University: http://dx.doi.org/10.7554/eLife.21761.

It is a well-established fact that our percepts do not always reflect reality. However, it seems that we don’t just accept this unconsciously, but, surprisingly, we even seem to prioritize the filled-in percept to the reliable input. This finding surprised even the scientists who carried out this study using the phenomenon of the blind spot of the eye.


Our brain fills in the gaps in our percepts – and as a result we treat the filled-in percepts as more reliable than reality itself.

Copyright: Osnabrueck Universitity/ Ricardo Gameiro

The study from the Osnabrueck University, Germany, reveals that when choosing between two identical visual objects – one generated internally based on information from the blind spot and an external one – we are surprisingly likely to show a bias towards the internal information.

»To make sense of the world around us, we must combine information from multiple sources while taking into account how reliable they are«, says senior author Professor Peter König, from the Institute of Cognitive Science. »When crossing the street, for example, we usually rely more on input from our eyes than our ears. However we can reassess our reliability estimate: on a foggy day with poor visibility, we might prioritize listening for traffic instead. Our brain makes an assessment of the reliability of our percepts. «

But how does our brain deal with incomplete percepts? This is where the blind spot comes into play: We are able to see because the light coming from the outside world arrives at the light-sensitive photoreceptor cells of the retina. However, there is an area on the retina where the presence of the optic nerve leaves no space for light-sensitive receptors and thus we do not receive any visual input from the outside world. This region is called the ‘blind spot’.

“In the case of the blind spot, the brain ‘fills in’ the missing information from its surrounding, resulting in no apparent difference in what we see,” explains Professor Peter König. “While this fill-in is normally accurate enough for the daily routine, it is mostly unreliable because no actual information from the real world ever reaches the brain«, says the cognitive scientist. »However, it had been unclear whether we are aware of the unreliability of these percepts.«

To find out, around 100 study participants compared two striped stimuli, which were physically different but perceived as identical due to the blind spot. The task was to select the image they thought to represent the continuous stimulus.

»We thought people would either make their choice without preference – not being aware of the blind spot – or with a preference towards the real, continuously striped stimuli, « says first author Benedikt Ehinger, researcher at the Osnabrück University. In reality, exactly the opposite happened: »The participants chose the blind spot stimulus more often than the fully perceived one. This was very surprising. «

So, why are subjects so keen on the blind-spot information when it is essentially the least reliable? The team’s interpretation is that subjects compare the target, the continuous stimulus, against the incoming sensory input resulting in an error signal which represents the mismatch. In the absence of veridical information, no deviation and thus no error or a smaller signal occurs. Ultimately it leads to a higher credibility at the decision making stage. This indicates that perceptual decision-making can rely more on inferred rather than real information, even when there is some knowledge about the reduced reliability of the inferred image available in the brain.

“In other words, the implicit knowledge that a filled-in stimulus is less reliable than an external one does not seem to be taken into account for perceptual decision-making,” Ehinger explains.The team says that understanding how we integrate information from different sources with different reliabilities can inform us about the exact mechanisms used by the brain to make decisions based on our percepts.

Thus, new questions arise: Is the tendency to favor information generated within the brain unique to the visual blind spot, or does it also occur elsewhere? Which are the mechanisms of the brain to decide about the trustworthy of the various percept sources?

Nevertheless, »There is no reason to fear the blind spot - it won’t lead you astray in everyday situations – especially with both eyes open.« says Professor König. »However, we should keep it in mind and investigate that we tend to put subjective perception before reality. «

Further information for the media:

Prof. Dr. Peter Koenig, Osnabrueck University,
Institute of Cognitive Science,
Department of Neurobiopsychology,
Wachsbleiche 27, 49090 Osnabrück,
Tel: +49 541 969 2399 Fax: +49 541 969 2596,
E-Mail: peter.koenig@uni-osnabrueck.de

Benedikt Ehinger, Osnabrueck University,
Institute of Cognitive Science,
Department of Neurobiopsychology,
Wachsbleiche 27, 49090 Osnabrueck,
Tel: +49 541 969 2245 Fax: +49 541 969 2596,
E-Mail: behinger@uni-osnabrueck.de

Dr. Utz Lederbogen | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-osnabrueck.de

Further reports about: Cognitive Science decision-making optic nerve stimulus visual input

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

The stacked colour sensor

16.11.2017 | Materials Sciences

Researchers take next step toward fusion energy

16.11.2017 | Power and Electrical Engineering

Colorado River's connection with the ocean was a punctuated affair

16.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>