Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human insights inspire solutions for household robots

06.02.2015

New algorithms designed by Berkeley and UMass researchers allow autonomous systems to deal with uncertainty

People typically consider doing the laundry to be a boring chore. But laundry is far from boring for artificial intelligence (AI) researchers like Siddharth Srivastava, a scientist at the United Technologies Research Center, Berkeley.


Researchers developed a new approach that allows a robot to plan its activity to accomplish an assigned task.

Credit: Siddharth Srivastava, Shlomo Zilberstein, Abhishek Gupta, Pieter Abbeel, Stuart Russell

To AI experts, programming a robot to do the laundry represents a challenging planning problem because current sensing and manipulation technology is not good enough to identify precisely the number of clothing pieces that are in a pile and the number that are picked up with each grasp. People can easily cope with this type of uncertainty and come up with a simple plan. But roboticists for decades have struggled to design an autonomous system able to do what we do so casually--clean our clothes.

In work done at the University of California, Berkeley, and presented at the Association for Advancement of Artificial Intelligence conference in Austin, Srivastava (working with Abhishek Gupta, Pieter Abbeel and Stuart Russell from UC Berkeley and Shlomo Zilberstein from University of Massachusetts, Amherst) demonstrated a robot that is capable of doing laundry without any specific knowledge of what it has to wash.

Earlier work by Abbeel's group had demonstrated solutions for the sorting and folding of clothes. The laundry task serves as an example for a wide-range of daily tasks that we do without thinking but that have, until now, proved difficult for automated tools assisting humans.

"The widely imagined helper robots of the future are expected to 'clear the table,' 'do laundry' or perform day-to-day tasks with ease," Srivastava said. "Currently however, computing the required behavior for such tasks is a challenging problem--particularly when there's uncertainty in resource or object quantities."

Humans, on the other hand, solve such problems with barely a conscious effort. In their work, the researchers showed how to compute correct solutions to problems by using some assumptions about the uncertainty.

"The main issue is how to develop what we call 'generalized plans,'" said Zilberstein, a professor of computer science and director of the Resource Bound Reasoning Lab at UMass Amherst. "These are plans that don't just work in a particular situation that is very well defined and gets you to a particular goal that is also well defined, but rather ones that work on a whole range of situations and you may not even know certain things about it."

The researchers' key insight was to use human behavior--the almost unconscious action of pulling, stuffing, folding and piling--as a template, adapting both the repetitive and thoughtful aspects of human problem-solving to handle uncertainty in their computed solutions.

By doing so, they enabled a PR2 robot to do the laundry without knowing how many and what type of clothes needed to be washed.

Out of the 13 or so tasks involved in the laundry problem, the team's system was able to complete more than half of them autonomously and nearly completed the rest--by far the most effective demonstration of laundering AI to date.

The framework that Srivastava and his team developed combines several popular planning paradigms that have been developed in the past using complex control structures such as loops and branches and optimizes them to run efficiently on modern hardware. It also incorporates an effective approach for computing plans by learning from examples, rather than through rigid instructions or programs.

"What's particularly exciting is that these methods provide a way forward in a problem that's well known to be computationally unsolvable in the worst case," Srivastava said. "We identified a simpler formulation that is solvable and also covers many useful scenarios."

"It is exciting to see how this breakthrough builds upon NSF-funded efforts tackling a variety of basic-research problems including planning, uncertainty, and task repetition," said Héctor Muñoz-Avila, program director at NSF's Robust Intelligence cluster.

Though laundry robots are an impressive, and potentially time-saving, application of AI, the framework that Srivastava and his team developed can be applied to a range of problems. From manufacturing to space exploration to search-and-rescue operations, any situation where artificially intelligent systems must act, despite some degree of uncertainty, can be addressed with their method.

"Using this approach, solutions to high-level planning can be generated automatically," Srivastava said. "There's more work to be done in this direction, but eventually we hope such methods will replace tedious and error-prone task-specific programming for robots."

Media Contact

Aaron Dubrow
adubrow@nsf.gov
703-292-4489

 @NSF

http://www.nsf.gov 

Aaron Dubrow | EurekAlert!

More articles from Information Technology:

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

nachricht Researchers catch extreme waves with higher-resolution modeling
15.02.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>