Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Holograms taken to new dimension

19.07.2017

University of Utah engineers create brighter, full-color holograms that can be viewed with low light

Technology developed by a team of University of Utah electrical and computer engineers could make the holographic chess game R2-D2 and Chewbacca played in "Star Wars" a reality.


University of Utah electrical and computer engineering associate professor Rajesh Menon shows off a new 2D hologram that can be displayed with just a flashlight. His team has discovered a way to create inexpensive full-color 2-D and 3-D holograms that are far more realistic, brighter and can be viewed at wider angles than current holograms.

Credit: Dan Hixson/University of Utah College of Engineering

The team led by electrical and computer engineering associate professor Rajesh Menon has discovered a way to create inexpensive full-color 2-D and 3-D holograms that are far more realistic, brighter and can be viewed at wider angles than current holograms. The applications for this technology could be wide-ranging, from currency and identification badges to amusement rides and advertisements.

"You can have rich colors at high efficiency, with high brightness and at low cost. And you don't need fancy lasers and complicated optics," Menon says.

The team's technology was profiled in a new paper published July 19, 2017, in the current issue of Scientific Reports. The paper, "Full Color, Large Area, Transmissive Holograms Enabled by Multi-Level Diffractive Optics," was co-authored by University of Utah doctoral students Nabil Moham, Monjurul Meem and Xiaowen Wan.

Typically, the projection of any image, whether it is two or three dimensional, is inefficient because when white light shines on an object, we can only see the reflected color that bounces back to our eyes while the rest of the colors of the spectrum are absorbed. Therefore, there is a lot of wasted light. With a typical LCD projector, for example, you may only see as little as 5 percent of the total light at one time.

Menon and his team have discovered a better way that borrows from the same principle behind how wings of certain butterflies display their colors: Instead of reflecting only the colors you see while absorbing the rest, all of the white light is redirected so you see the wavelengths of the wing's colors at different locations. None of the light is absorbed and therefore wasted.

Using sophisticated algorithms and a new fabrication method, the engineers can create holograms that do the same thing -- redirect colors to appropriate locations -- instead of absorbing most of it to project much brighter photographic images either in 2-D or 3-D and with full, natural colors. Currently, full-color holograms require lasers to not only make them, but also to view them. Menon's holograms can be viewed with regular white light. Most importantly, these holograms can be viewed from any angle, and the image detail does not change, much like a real object.

"Projecting an image before was very inefficient, and you need a massive lamp," Menon says. "Here, you can just do it with just a piece of plastic and a flashlight. It's much simpler and more efficient this way."

Such technology could be used on currency notes with security holograms that produce more lifelike images. Currently, the holograms on some foreign currency or on credit cards look like shimmering monochromatic images, but Menon's holograms would be more like full-color photographs. It also could be used for identification badges, driver's licenses and security documents like passports in which an officer could use just a flashlight to authenticate it instead of a special light such as an infrared scanner. And these holograms could be inexpensive to manufacture because they can stamp out each sticker like a compact disc or DVD.

While Menon and his team have only produced 2-D still images with their technology so far, he said it wouldn't be difficult to take the next step to create full-color 3-D moving images similar to the holographic chess pieces in "Star Wars." Therefore, the holograms could be utilized in entertainment, such as for virtual reality headsets, for movie theaters that wouldn't require powerful projector lamps (and it could be an avenue for glasses-less 3-D movies) or for amusement rides that use high-tech special effects.

"Imagine going through a ride and you want a monster to jump out. This is a way to do that with much richer color, with higher efficiency and in a much more ubiquitous manner because it's so cheap," Menon says.

The technology can also be used to produce holographic photos or video for advertising for platforms like billboards or kiosks. Moving 3-D video could be possible in as little as two years, and his team is working toward that now, he said.

Menon launched a company called PointSpectrum that is researching this new technology and to commercialize its potential uses.

Media Contact

Vince Horiuchi
vincent.horiuchi@utah.edu
801-556-5187

 @uofunews

http://www.unews.utah.edu/ 

Vince Horiuchi | EurekAlert!

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>