Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


HLRS Supercomputer “Hornet” Replaces “Hermit”


The High Performance Computing Center Stuttgart (HLRS) announces the completion of the installation of its new High Performance Computing (HPC) system code named “Hornet”. The CRAY XC40 supercomputer delivers a peak performance of 3.8 PetaFlops with which is almost quadruples the performance of its predecessor system “Hermit”. Hornet has now been declared fully operational and will be available for its scientific and industrial usership as of immediately.

HLRS’s new Cray XC40 system is based on the new Intel Xeon processors, formerly code-named “Haswell”, and the Cray Aries system interconnect. In its current configuration state, Hornet consists of 21 cabinets hosting 3,944 compute nodes, which sums up to a total of 94,656 compute cores.

HLRS Supercomputer

University of Stuttgart, HLRS

The system’s main memory capacity is 493 Terabyte. Users will specifically benefit from the now quadrupled storage space the HLRS supercomputing infrastructure provides: 5.4 Petabyte of file storage with an Input/Output speed in the range of 150GB/s are available to meet the performance challenges of today’s most demanding users of HPC systems (High Performance Computing), which come from a wealth of fields ranging from the automotive and aerospace research and industries to medicine and life sciences, astrophysics and geophysics, amongst others.

Hornet is the successor of HLRS’s previous flagship computer Hermit, which after about three years in service is gradually been taken out of operation. The system replacement went according to the earlier agreed HPC system roadmap in which – given the rapid pace of technology change – a 3-year-life cycle for Hermit had been defined.

“HPC systems have become an indispensable tool to achieve breakthrough discoveries and innovations. With Hornet, we have taken the next step for HLRS to enable world-class research,“ states Professor Dr.-Ing. Michael M. Resch, Director of HLRS.

“It is very important for us that we are now in a position to offer state-of-the-art HPC technology also to our industrial users. Together with our simulation expertise the extended simulation capacities and capabilities of Hornet provide our scientific and industrial users in Germany and Europe with perfect means to continue enabling innovation and quality of the highest degree.”

More Power Output – Less Power Consumption

HLRS’s new high-end HPC system delivers significantly increased computing power – it outperforms Hermit both in peak as in sustained performance by a factor of about 4 – while at the same time excelling in drastically reduced power consumption. In combination with the at HLRS installed energy-efficient cooling system, an optimal cost-of-ownership is achieved which furthers the national HPC centre’s aspirations to be a model example in the area of energy efficiency and sustainability.


Following its ambitious technology roadmap, HLRS will extend Hornet in 2015 with 20 additional cabinets, boosting the system’s expected peak performance to then over 7 PetaFlops.

Hornet as well as the system expansion planned for 2015 is funded through the Gauss Centre for Supercomputing with support of the Federal Ministry of Education and Research (BMBF) and the Ministry of Higher Education, Research and Arts Baden-Württemberg.

Further information:

Contakt: Prof. Michael M. Resch, Höchstleistungsrechenzentrum Universität Stuttgart,
Tel. 0711/685-87269, e-mail:

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>