Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-Tech Solutions Ease Inaugural Challenges

19.01.2009
Transportation and security officials on Inauguration Day will have a centralized, consolidated stream of traffic information and other data displayed on a single screen using software developed by the University of Maryland. The Regional Integrated Transportation Information System (RITIS) gives officials a single real-time view far more comprehensive than previously available.

“At this point, our team is working almost around the clock to incorporate as much data and functionality as possible,” says Michael L. Pack, director of the University of Maryland’s Center for Advanced Transportation Technology Laboratory (CATT), part of the Clark School of Engineering.

The RITIS system fuses, translates, standardizes and redistributes vast amounts of real-time information obtained from multiple agencies in the region in order to provide an enhanced overall, real-time view, or digital map, of traffic and incident conditions across the region’s transportation network. It can present the data in both two and three-dimensional graphical formats, creating a life-like simulation and display.

The system was originally developed to coordinate traffic-related information, but the CATT lab is now working to build-in additional data sources from public safety agencies, transit groups, weather data, and numerous other groups.

“We’re trying to visualize the real-time status of our transportation system – showing the real-world and providing situational awareness to decision makers – all on a single screen.” Pack says. “We’re enabling these many disparate systems to communicate with each other.”

The idea is to enhance officials’ ability to monitor vehicular traffic, accidents, incidents, response plans, air space, weather conditions and more – data that’s available, but until now could not be simultaneously displayed on a single platform or user interface.

Lee Tune | Newswise Science News
Further information:
http://www.umd.edu
http://www.newsdesk.umd.edu/experts/hottopic.cfm?hotlist_id=150
http://www.newsdesk.umd.edu/experts/hottopic.cfm?hotlist_id=149

More articles from Information Technology:

nachricht Rules for superconductivity mirrored in 'excitonic insulator'
08.12.2017 | Rice University

nachricht Smartphone case offers blood glucose monitoring on the go
08.12.2017 | University of California - San Diego

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>