Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Handshake of atoms: lefties or righties?

23.02.2016

A team of researchers from the Department of Physics at Hamburg University, together with col-leagues from the Radboud university in Nijmegen, the FZ Jülich and the MPI of Solid State Research in Stuttgart, explored the atomistic origin of magnetization handedness in a structure containing as few as two iron atoms on a platinum crystal surface and they were able to controllably switch the magnetization of the iron pair back and forth from left-handed to right-handed. This unprecedented control of the magnetization might enable a future design of stable magnetic swirls, so-called skyrmions, with tailored sizes and handedness, which are being discussed as new units for information storage.

Handedness is a peculiar breaking of symmetry where a mirror image of a structure or pattern is different from its original. While the most well-known example is our own hand, which gave the name to this kind of asymmetry, there are many other materials or structures known from different disciplines of natural sciences which show handedness: Amino acids and sugars, snail shells, and swirls of the magnetization, so called skyrmions, which have recently been heavily investigated because of their promise as new units for the storage of bits in information technology.


The Figure shows a pair of magnetic iron atoms on top of a platinum crystal surface as “seen” with a scanning tunneling microscope (hillocks). The spectra of the left and right atom (green and red lines), taken with the same microscope, show characteristic gaps, that tell the scientists a clockwise rotation of the atoms’ magnetization exists, as illustrated by the clockwise rotation of the arrows from the green to the red sphere representing the iron atoms. The reason for this right-handedness is a peculiar magnetic handshake mediated by the platinum atoms in the substrate (blue spheres) below the iron pair which breaks the mirror symmetry, as apparent from the mirror image on the bottom.

University of Hamburg

In all of these structures, we can differentiate righties and lefties, which are mirror images of each other. While in some of these examples lefties and righties are almost equally represented in nature, in many others one sort of handedness is dominating. Scientists have since wondered about the possible origin of this so called homo-chirality, and it has been even proposed that evolutionary processes are responsible for handedness in some systems.

The Hamburg research team has now explored the source of magnetic handedness in the smallest possible units. By observing a pair of iron atoms, which are lying on a platinum crystal, with a scanning tunneling microscope (see Figure) they were able to deduce a clockwise rotation of the magnetization, i.e. the pair is right-handed.

Moreover, moving the right atom by only one atomic diameter farther apart from the left atom changes the rotation of the magnetization from clockwise to anti-clockwise, i.e. the pair gets left-handed. Together with the theory group of the Forschungszentrum Jülich, the team was able to show that the mechanism responsible for this handedness is a magnetic handshake between the two atoms mediated by the platinum substrate atoms (see the Figure).

The researchers now hope that they can use the tip of the scanning tunneling microscope as a tool in order to build lattices of hundreds of such iron atoms, which might then host left- or right-handed skyrmions.

Original publication:
Tailoring the chiral magnetic interaction between two individual atoms
A. A. Khajetoorians, M. Steinbrecher, M. Ternes, M. Bouhassoune, M. dos Santos Dias, S. Lounis,
J. Wiebe, and R. Wiesendanger,
Nature Communications 7, 10620 (2016).
DOI: 10.1038/NCOMMS10620

Further Information:
Heiko Fuchs
Sonderforschungsbereich 668
Universität Hamburg
Jungiusstr. 9A, 20355 Hamburg
Tel.: (0 40) 4 28 38 - 69 59
Fax: (0 40) 4 28 38 - 24 09
E-Mail: hfuchs@physnet.uni-hamburg.de

Weitere Informationen:

http://www.sfb668.de
http://www.nanoscience.de

Heiko Fuchs | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht Smarter robot vacuum cleaners for automated office cleaning
15.08.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Researchers 3-D print first truly microfluidic 'lab on a chipl devices
15.08.2017 | Brigham Young University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>