Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Goodbye, login. Hello, heart scan

26.09.2017

A new non-contact, remote biometric tool could be the next advance in computer security

Forget fingerprint computer identification or retinal scanning. A University at Buffalo-led team has developed a computer security system using the dimensions of your heart as your identifier.


The system uses low-level Doppler radar to measure your heart, and then continually monitors your heart to make sure no one else has stepped in to run your computer.

Credit: Bob Wilder/University at Buffalo

The system uses low-level Doppler radar to measure your heart, and then continually monitors your heart to make sure no one else has stepped in to run your computer.

The technology is described in a paper that the inventors will present at next month's 23rd Annual International Conference on Mobile Computing and Communication (MobiCom) in Utah. The system is a safe and potentially more effective alternative to passwords and other biometric identifiers, they say. It may eventually be used for smartphones and at airport screening barricades.

"We would like to use it for every computer because everyone needs privacy," said Wenyao Xu, PhD, the study's lead author, and an assistant professor in the Department of Computer Science and Engineering in UB's School of Engineering and Applied Sciences.

"Logging-in and logging-out are tedious," he said.

The signal strength of the system's radar "is much less than Wi-Fi," and therefore does not pose any health threat, Xu said.

"We are living in a Wi-Fi surrounding environment every day, and the new system is as safe as those Wi-Fi devices," he said. "The reader is about 5 milliwatts, even less than 1 percent of the radiation from our smartphones."

The system needs about 8 seconds to scan a heart the first time, and thereafter the monitor can continuously recognize that heart.

The system, which was three years in the making, uses the geometry of the heart, its shape and size, and how it moves to make an identification. "No two people with identical hearts have ever been found," Xu said. And people's hearts do not change shape, unless they suffer from serious heart disease, he said.

Heart-based biometrics systems have been used for almost a decade, primarily with electrodes measuring electrocardiogram signals, "but no one has done a non-contact remote device to characterize our hearts' geometry traits for identification," he said.

The new system has several advantages over current biometric tools, like fingerprints and retinal scans, Xu said. First, it is a passive, non-contact device, so users are not bothered with authenticating themselves whenever they log-in. And second, it monitors users constantly. This means the computer will not operate if a different person is in front of it. Therefore, people do not have to remember to log-off when away from their computers.

Xu plans to miniaturize the system and have it installed onto the corners of computer keyboards. The system could also be used for user identification on cell phones. For airport identification, a device could monitor a person up to 30 meters away.

Xu and collaborators will present the paper -- "Cardiac Scan: A Non-contact and Continuous Heart-based User Authentication System" -- at MobiCom, which is billed as the flagship conference in mobile computing. Organized by the Association for Computing Machinery, the conferernce will be held from Oct. 16-20 in Snowbird, Utah.

Additional authors are, from the UB Department of Computer Science and Engineering, Feng Lin, PhD (now an assistant professor at the University of Colorado Denver); Chen Song, a PhD student; Yan Zhuang, a master's student; and Kui Ren, PhD, SUNY Empire Innovation Professor; and from Texas Tech University, Changzhi Li, PhD.

Media Contact

Grove Potter
mpotter3@buffalo.edu
716-645-2130

 @UBNewsSource

http://www.buffalo.edu 

Grove Potter | EurekAlert!

More articles from Information Technology:

nachricht New epidemic management system combats monkeypox outbreak in Nigeria
15.12.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>