Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer IPA develops prototype of intelligent care cart

20.08.2015

It comes when called, bringing care utensils with it and recording how they are used: Fraunhofer IPA is developing an intelligent care cart that provides care staff with physical and informational support in their day-to-day work. The scientists at Fraunhofer IPA have now completed a first prototype. In doing so, they are continuing in their efforts to improve working conditions in the care sector and are developing solutions designed to address the challenges of demographic change.

Technical assistance systems can improve the difficult working conditions in residential nursing homes and hospitals by helping the staff in their work and reducing their workload, thereby giving them more time to interact with patients and residents. Great potential for workload reduction, in terms of both health benefits and time savings, is offered by the actual nursing process, which is where the intelligent care cart is designed to help.


The intelligent care cart travels autonomously to where it is needed.

Fraunhofer IPA


The touchscreen allows the nurse to record which patient-care utensils have been consumed.

Fraunhofer IPA

In a first prototype, the scientists at Fraunhofer IPA have equipped the mobile platform of the Care-O-bot® 4 service robot with a new body that can be stocked with care utensils. If the care cart is connected to the call system of the care home or hospital, it can travel automatically to the room from which the patient has rung.

The built-in touchscreen allows the care staff to confirm their presence and, once the robot is no longer required, to free it up for its next assignment. In addition, the carer can use the display to easily record which care utensils they have consumed.

Improvements for day-to-day work

Conventional care carts do not offer optimal assistance for care staff. Especially in an emergency, the cart is often not where the staff need it to be. Also, it is often insufficiently stocked with supplies. This costs the staff valuable time, because they first have to go and fetch any missing supplies from the storeroom, which can involve walking long distances inside the care home or hospital.

Even if electronic media are used, it takes the care staff a lot of time to record the kind of care they have administered and the supplies they have consumed, which is why they are often forced to carry out such work after the end of their shift.

“Our goal is to further develop the care cart in such a way that its intelligent assistive features facilitate the day-to-day work of care staff. For example, the cart should always be where the nurse needs it to be. This saves legwork,” explains Dr. Birgit Graf, Group Manager for Domestic and Personal Robotics at Fraunhofer IPA. For this purpose, the cart is equipped with a navigation system to enable it to travel autonomously to where it is needed. Any obstacles it encounters on the way are automatically detected and avoided. As an alternative to being connected to the call system, the cart can also be called using a smartphone.

In subsequent stages of development, there are plans to design the cart to automatically follow the care staff. A fully automated mechanism will enable the cart to make supplies available to the nurse in an ergonomic and hygienic manner. The nurse will record the care they have administered directly in the patient’s room using the display on the care cart. Finally, the scientists at Fraunhofer IPA plan to study the possibilities for connection to an automated central storeroom that will restock the care cart, electronically monitor inventories and reorder as required.

Care cart as part of the “SeRoDi” project

The intelligent care cart is being developed as part of a four-year collaborative project called “Service Robotics for Assistance with Personal Services” (SeRoDi). The German Federal Ministry for Education and Research (BMBF) is supporting the project with almost three million euros. Fraunhofer IPA is collaborating with the Institute for Control Engineering of Machine Tools and Manufacturing Units (ISW) and the Institute for Human Factors and Technology Management (IAT) from the University of Stuttgart, the University of Greifswald as well as Altenpflegeheime Mannheim (Mannheim Nursing Homes) and the University Clinic of Mannheim as end users.

The goal is to implement three application scenarios from an everyday nursing environment and, in several evaluation cycles, to study the extent to which the new technologies can deliver improvements in the day-to-day work of the staff. In addition to the intelligent medication cart, the project partners are working to further develop the multifunctional “ELEVON” lifter, which is equipped with assistive features designed to help care staff with the lifting and transport of patients. The third application scenario involves a “mobile kiosk”, which, when called, can bring such items as snacks, drinks or magazines to the residents or patients either in the lounge or directly to their bed.

Wider dissemination of service robots

The project partners plan to leave the implemented assistive systems in the care homes or hospitals after the end of the project in order to allow them to be used, among other things, as demonstrators for other homes or hospitals. “We hope that the SeRoDi project will not only lead to the development and testing of new applications, but also enable us to gain new development and application partners in an effort to further promote the use of service robots in the medical and care sector,” emphasizes Birgit Graf.

Further Information:
See a video on Youtube that demonstrates how the medical care cart works:
https://www.youtube.com/watch?v=RM6uhWDfdqc&index=62

Contact Information:
Dr.-Ing. Birgit Graf, Phone: +49 711-970 1910; birgit.graf@ipa.fraunhofer.de

Editorial office:
Karin Röhricht | Telefon +49 711 970-3874 | karin.roehricht@ipa.fraunhofer.de

Press department:
Jörg-Dieter Walz | Telefon +49 711 970-1667 | presse@ipa.fraunhofer.de
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA | Nobelstraße 12 | 70569 Stuttgart

Weitere Informationen:

http://www.ipa.fraunhofer.de

Jörg Walz | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

More articles from Information Technology:

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>