Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer IPA develops prototype of intelligent care cart

20.08.2015

It comes when called, bringing care utensils with it and recording how they are used: Fraunhofer IPA is developing an intelligent care cart that provides care staff with physical and informational support in their day-to-day work. The scientists at Fraunhofer IPA have now completed a first prototype. In doing so, they are continuing in their efforts to improve working conditions in the care sector and are developing solutions designed to address the challenges of demographic change.

Technical assistance systems can improve the difficult working conditions in residential nursing homes and hospitals by helping the staff in their work and reducing their workload, thereby giving them more time to interact with patients and residents. Great potential for workload reduction, in terms of both health benefits and time savings, is offered by the actual nursing process, which is where the intelligent care cart is designed to help.


The intelligent care cart travels autonomously to where it is needed.

Fraunhofer IPA


The touchscreen allows the nurse to record which patient-care utensils have been consumed.

Fraunhofer IPA

In a first prototype, the scientists at Fraunhofer IPA have equipped the mobile platform of the Care-O-bot® 4 service robot with a new body that can be stocked with care utensils. If the care cart is connected to the call system of the care home or hospital, it can travel automatically to the room from which the patient has rung.

The built-in touchscreen allows the care staff to confirm their presence and, once the robot is no longer required, to free it up for its next assignment. In addition, the carer can use the display to easily record which care utensils they have consumed.

Improvements for day-to-day work

Conventional care carts do not offer optimal assistance for care staff. Especially in an emergency, the cart is often not where the staff need it to be. Also, it is often insufficiently stocked with supplies. This costs the staff valuable time, because they first have to go and fetch any missing supplies from the storeroom, which can involve walking long distances inside the care home or hospital.

Even if electronic media are used, it takes the care staff a lot of time to record the kind of care they have administered and the supplies they have consumed, which is why they are often forced to carry out such work after the end of their shift.

“Our goal is to further develop the care cart in such a way that its intelligent assistive features facilitate the day-to-day work of care staff. For example, the cart should always be where the nurse needs it to be. This saves legwork,” explains Dr. Birgit Graf, Group Manager for Domestic and Personal Robotics at Fraunhofer IPA. For this purpose, the cart is equipped with a navigation system to enable it to travel autonomously to where it is needed. Any obstacles it encounters on the way are automatically detected and avoided. As an alternative to being connected to the call system, the cart can also be called using a smartphone.

In subsequent stages of development, there are plans to design the cart to automatically follow the care staff. A fully automated mechanism will enable the cart to make supplies available to the nurse in an ergonomic and hygienic manner. The nurse will record the care they have administered directly in the patient’s room using the display on the care cart. Finally, the scientists at Fraunhofer IPA plan to study the possibilities for connection to an automated central storeroom that will restock the care cart, electronically monitor inventories and reorder as required.

Care cart as part of the “SeRoDi” project

The intelligent care cart is being developed as part of a four-year collaborative project called “Service Robotics for Assistance with Personal Services” (SeRoDi). The German Federal Ministry for Education and Research (BMBF) is supporting the project with almost three million euros. Fraunhofer IPA is collaborating with the Institute for Control Engineering of Machine Tools and Manufacturing Units (ISW) and the Institute for Human Factors and Technology Management (IAT) from the University of Stuttgart, the University of Greifswald as well as Altenpflegeheime Mannheim (Mannheim Nursing Homes) and the University Clinic of Mannheim as end users.

The goal is to implement three application scenarios from an everyday nursing environment and, in several evaluation cycles, to study the extent to which the new technologies can deliver improvements in the day-to-day work of the staff. In addition to the intelligent medication cart, the project partners are working to further develop the multifunctional “ELEVON” lifter, which is equipped with assistive features designed to help care staff with the lifting and transport of patients. The third application scenario involves a “mobile kiosk”, which, when called, can bring such items as snacks, drinks or magazines to the residents or patients either in the lounge or directly to their bed.

Wider dissemination of service robots

The project partners plan to leave the implemented assistive systems in the care homes or hospitals after the end of the project in order to allow them to be used, among other things, as demonstrators for other homes or hospitals. “We hope that the SeRoDi project will not only lead to the development and testing of new applications, but also enable us to gain new development and application partners in an effort to further promote the use of service robots in the medical and care sector,” emphasizes Birgit Graf.

Further Information:
See a video on Youtube that demonstrates how the medical care cart works:
https://www.youtube.com/watch?v=RM6uhWDfdqc&index=62

Contact Information:
Dr.-Ing. Birgit Graf, Phone: +49 711-970 1910; birgit.graf@ipa.fraunhofer.de

Editorial office:
Karin Röhricht | Telefon +49 711 970-3874 | karin.roehricht@ipa.fraunhofer.de

Press department:
Jörg-Dieter Walz | Telefon +49 711 970-1667 | presse@ipa.fraunhofer.de
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA | Nobelstraße 12 | 70569 Stuttgart

Weitere Informationen:

http://www.ipa.fraunhofer.de

Jörg Walz | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

More articles from Information Technology:

nachricht New technology enables 5-D imaging in live animals, humans
16.01.2017 | University of Southern California

nachricht Fraunhofer FIT announces CloudTeams collaborative software development platform – join it for free
10.01.2017 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>