Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forecasting future flooding

02.04.2015

Oregon researcher uses XSEDE/TACC resources to study flood zones in Northwestern coastal towns

The Pacific Northwest is dotted by small, low-lying, coastal cities where populations tend to cluster. These communities can be isolated and are susceptible to devastation from major storms that bring substantial wind, waves and storm surge.


The pink shaded area shows the land inundated (flooded) during a sample storm.

Credit: Researcher David Hill, Oregon State University

With climate change, it is anticipated that storms will only become more frequent and intense, signifying a need to understand how the areas will be affected.

David Hill, a researcher at Oregon State University, is focused on the hydrology and hydrodynamics in coastal areas, which represent the boundary between terrestrial and marine environments. His research on future levels of flooding in Tillamook Bay was published in the Journal of Geophysical Research in January 2015.

"This particular project is a blending of our interests in estuarine and coastal hydrodynamics and our interests in climate change," Hill said. "We're interested in getting a good quantitative understanding of the extreme water levels we can expect from coastal flooding."

Unlike the South or East coast of the United States, coastal flooding in the Pacific Northwest comes primarily from large waves generated by major storms instead of hurricanes.

"We get big storms here, it's not uncommon to see wave heights that are 10 meters," Hill said. "Those waves do a couple of things, they can overtop dunes and sea walls. There is also a curious effect where as those waves approach shore and break, they actually push the water up, creating a storm surge effect."

Storm surge is the abnormal rise of water generated by a storm, causing extreme flooding in coastal areas. It is costly, often leading to the damage or loss of houses and businesses, as well as the potential loss of life. In a report released by the Intergovernmental Panel on Climate Change (IPCC), climate scientists detailed how carbon emissions will impact future climate, and in turn sea level rise. These changes in climate will also lead to an increase in extreme storms and flooding in the future.

Hill and his team of researchers wanted to quantify exactly how flooding will change in the Pacific Northwest on a decadal to century time scale. The researchers developed a novel approach to the issue by using climate data from the IPCC and directly modeling all of the components that cause flooding at the coast including, waves, tides, winds blowing over the surface of the ocean and estuaries, precipitation, and stream flow.

Through an allocation with the National Science Foundation Extreme Science and Engineering Discovery Environment (NSF XSEDE), a national cyberinfrastructure that gives researchers access to advanced digital resources, Hill and his team use advanced computing at the Texas Advanced Computing Center (TACC) to perform their modeling.

"The models we need to simulate year after year of climate data are computationally intensive. They solve key physical equations that govern the transport of water and energy, which requires a fine grid in space and time," Hill said. "And at the conclusion of our modeling run, we have a multi-year data record of all of these important flooding variables -- the raw output is very large."

Hill has been a TACC user for many years; he began with the Lonestar supercomputer in 2007 and is now using Stampede, one of the most powerful supercomputers in the world.

"My research program changed quite a bit because of those initial projects with Lonestar. Having that kind of access was great because it allowed us to do all these things we couldn't do before," Hill said. "I ended up pushing a larger percentage of my research portfolio over towards these parallel computing model studies."

Results from Hill's study allowed the researchers to calculate extreme water levels for different locations in an estuarine environment for 10-year, 50-year, and 100-year periods. Then, the water levels were overlaid on a digital model of a particular area to identify the zones of inundation.

The findings highlight the need to reconsider flood maps that Oregon city planners use for development. Currently, the maps created for future flood zones only show a spatially uniform water elevation. However, Hill's main finding is that these assumptions are invalid. His models show that the level of inundation will vary greatly, even in small bays. According to Hill, another interesting finding was that future extreme water levels were due to more than sea level rise, as waves and tides will be amplified in the future.

Although the flood maps are designed to represent a small area, Hill believes this work could be replicated throughout Oregon and other states in the Pacific Northwest.

"Working with TACC through XSEDE and using supercomputers allowed us to test a hypothesis, and apply physical process based models to coastal areas," Hill said. "Now, with funding from the Oregon Sea Grant we are working to implement a new strategy and make these kind of results available to other areas in the Pacific Northwest."

Media Contact

Faith Singer-Villalobos
faith@tacc.utexas.edu
512-232-5771

http://www.tacc.utexas.edu/ 

Faith Singer-Villalobos | EurekAlert!

More articles from Information Technology:

nachricht Smart Computers
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>