Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forecasting future flooding

02.04.2015

Oregon researcher uses XSEDE/TACC resources to study flood zones in Northwestern coastal towns

The Pacific Northwest is dotted by small, low-lying, coastal cities where populations tend to cluster. These communities can be isolated and are susceptible to devastation from major storms that bring substantial wind, waves and storm surge.


The pink shaded area shows the land inundated (flooded) during a sample storm.

Credit: Researcher David Hill, Oregon State University

With climate change, it is anticipated that storms will only become more frequent and intense, signifying a need to understand how the areas will be affected.

David Hill, a researcher at Oregon State University, is focused on the hydrology and hydrodynamics in coastal areas, which represent the boundary between terrestrial and marine environments. His research on future levels of flooding in Tillamook Bay was published in the Journal of Geophysical Research in January 2015.

"This particular project is a blending of our interests in estuarine and coastal hydrodynamics and our interests in climate change," Hill said. "We're interested in getting a good quantitative understanding of the extreme water levels we can expect from coastal flooding."

Unlike the South or East coast of the United States, coastal flooding in the Pacific Northwest comes primarily from large waves generated by major storms instead of hurricanes.

"We get big storms here, it's not uncommon to see wave heights that are 10 meters," Hill said. "Those waves do a couple of things, they can overtop dunes and sea walls. There is also a curious effect where as those waves approach shore and break, they actually push the water up, creating a storm surge effect."

Storm surge is the abnormal rise of water generated by a storm, causing extreme flooding in coastal areas. It is costly, often leading to the damage or loss of houses and businesses, as well as the potential loss of life. In a report released by the Intergovernmental Panel on Climate Change (IPCC), climate scientists detailed how carbon emissions will impact future climate, and in turn sea level rise. These changes in climate will also lead to an increase in extreme storms and flooding in the future.

Hill and his team of researchers wanted to quantify exactly how flooding will change in the Pacific Northwest on a decadal to century time scale. The researchers developed a novel approach to the issue by using climate data from the IPCC and directly modeling all of the components that cause flooding at the coast including, waves, tides, winds blowing over the surface of the ocean and estuaries, precipitation, and stream flow.

Through an allocation with the National Science Foundation Extreme Science and Engineering Discovery Environment (NSF XSEDE), a national cyberinfrastructure that gives researchers access to advanced digital resources, Hill and his team use advanced computing at the Texas Advanced Computing Center (TACC) to perform their modeling.

"The models we need to simulate year after year of climate data are computationally intensive. They solve key physical equations that govern the transport of water and energy, which requires a fine grid in space and time," Hill said. "And at the conclusion of our modeling run, we have a multi-year data record of all of these important flooding variables -- the raw output is very large."

Hill has been a TACC user for many years; he began with the Lonestar supercomputer in 2007 and is now using Stampede, one of the most powerful supercomputers in the world.

"My research program changed quite a bit because of those initial projects with Lonestar. Having that kind of access was great because it allowed us to do all these things we couldn't do before," Hill said. "I ended up pushing a larger percentage of my research portfolio over towards these parallel computing model studies."

Results from Hill's study allowed the researchers to calculate extreme water levels for different locations in an estuarine environment for 10-year, 50-year, and 100-year periods. Then, the water levels were overlaid on a digital model of a particular area to identify the zones of inundation.

The findings highlight the need to reconsider flood maps that Oregon city planners use for development. Currently, the maps created for future flood zones only show a spatially uniform water elevation. However, Hill's main finding is that these assumptions are invalid. His models show that the level of inundation will vary greatly, even in small bays. According to Hill, another interesting finding was that future extreme water levels were due to more than sea level rise, as waves and tides will be amplified in the future.

Although the flood maps are designed to represent a small area, Hill believes this work could be replicated throughout Oregon and other states in the Pacific Northwest.

"Working with TACC through XSEDE and using supercomputers allowed us to test a hypothesis, and apply physical process based models to coastal areas," Hill said. "Now, with funding from the Oregon Sea Grant we are working to implement a new strategy and make these kind of results available to other areas in the Pacific Northwest."

Media Contact

Faith Singer-Villalobos
faith@tacc.utexas.edu
512-232-5771

http://www.tacc.utexas.edu/ 

Faith Singer-Villalobos | EurekAlert!

More articles from Information Technology:

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>