Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FloSIS: A super-fast network flow capture system for efficient flow retrieval

01.04.2016

FloSIS is a multi-10Gbps network flow capture system that supports real-time flow indexing for fast flow retrieval and flow-content deduplication for enhanced storage efficiency.

Network packet capture performs essential functions in modern network management such as attack analysis, network troubleshooting, and performance debugging. As the network edge bandwidth currently exceeds 10 Gbps, the demand for scalable packet capture and retrieval is rapidly increasing. However, existing software-based packet capture systems neither provide high performance nor support flow-level indexing for fast query response. This would either prevent important packets from being stored or make it too slow to retrieve relevant flows.


FloSIS: A super-fast network flow capture system for efficient flow retrieval.

Copyright : KAIST

A research team led by Professor KyoungSoo Park and Professor Yung Yi of the School of Electrical Engineering at Korea Advanced Institute of Science and Technology (KAIST) have recently presented FloSIS, a highly scalable software-based network traffic capture system that supports efficient flow-level indexing for fast query response.

FloSIS is characterized by three key advantages. First, it achieves high-performance packet capture and disk writing by exercising full parallelism in computing resources such as network cards, CPU cores, memory, and hard disks. It adopts the PacketShader I/O Engine (PSIO) for scalable packet capture and performs parallel disk writes for high-throughput flow dumping. Towards high zero-drop performance, it strives to minimize the fluctuation of packet processing latency.

Second, FloSIS generates two-stage flow-level indexes in real time to reduce the query response time. The indexing utilizes Bloom filters and sorted arrays to quickly reduce the search space of a query. Also, it is designed to consume only a small amount of memory while allowing flexible queries with wildcards, ranges of connection tuples, and flow arrival times.

Third, FloSIS supports flow-level content deduplication in real time for storage savings. Even with deduplication, the system still records the packet-level arrival time and headers to provide the exact timing and size information. For an HTTP connection, FloSIS parses the HTTP response header and body to maximize the hit rate of deduplication for HTTP objects.

These design choices bring enormous performance benefits. On a server machine with dual octa-core CPUs, four 10Gbps network interfaces, and 24 SATA disks, FloSIS achieves up to 30 Gbps for packet capture and disk writing without a single packet drop. Its indexes take up only 0.25% of the stored content while avoiding slow linear disk search and redundant disk access. On a machine with 24 hard disks of 3 TB, this translates into 180 GB for 72 TB total disk space, which could be managed entirely in memory or stored into solid state disks for fast random access. Finally, FloSIS deduplicates 34.5% of the storage space for 67 GB of a real traffic trace only with 256 MB of extra memory consumption for a deduplication table. In terms of performance, it achieves about 15 Gbps zero-drop throughput with real-time flow deduplication.

Source:

This work is presented at 2015 USENIX Annual Technical Conference (ATC) on July 10 2015 in Santa Clara, California (link below).

Associated links

Lan Yoon | Research SEA
Further information:
http://www.researchsea.com

More articles from Information Technology:

nachricht Japanese researchers develop ultrathin, highly elastic skin display
19.02.2018 | University of Tokyo

nachricht Why bees soared and slime flopped as inspirations for systems engineering
19.02.2018 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>