Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FloSIS: A super-fast network flow capture system for efficient flow retrieval

01.04.2016

FloSIS is a multi-10Gbps network flow capture system that supports real-time flow indexing for fast flow retrieval and flow-content deduplication for enhanced storage efficiency.

Network packet capture performs essential functions in modern network management such as attack analysis, network troubleshooting, and performance debugging. As the network edge bandwidth currently exceeds 10 Gbps, the demand for scalable packet capture and retrieval is rapidly increasing. However, existing software-based packet capture systems neither provide high performance nor support flow-level indexing for fast query response. This would either prevent important packets from being stored or make it too slow to retrieve relevant flows.


FloSIS: A super-fast network flow capture system for efficient flow retrieval.

Copyright : KAIST

A research team led by Professor KyoungSoo Park and Professor Yung Yi of the School of Electrical Engineering at Korea Advanced Institute of Science and Technology (KAIST) have recently presented FloSIS, a highly scalable software-based network traffic capture system that supports efficient flow-level indexing for fast query response.

FloSIS is characterized by three key advantages. First, it achieves high-performance packet capture and disk writing by exercising full parallelism in computing resources such as network cards, CPU cores, memory, and hard disks. It adopts the PacketShader I/O Engine (PSIO) for scalable packet capture and performs parallel disk writes for high-throughput flow dumping. Towards high zero-drop performance, it strives to minimize the fluctuation of packet processing latency.

Second, FloSIS generates two-stage flow-level indexes in real time to reduce the query response time. The indexing utilizes Bloom filters and sorted arrays to quickly reduce the search space of a query. Also, it is designed to consume only a small amount of memory while allowing flexible queries with wildcards, ranges of connection tuples, and flow arrival times.

Third, FloSIS supports flow-level content deduplication in real time for storage savings. Even with deduplication, the system still records the packet-level arrival time and headers to provide the exact timing and size information. For an HTTP connection, FloSIS parses the HTTP response header and body to maximize the hit rate of deduplication for HTTP objects.

These design choices bring enormous performance benefits. On a server machine with dual octa-core CPUs, four 10Gbps network interfaces, and 24 SATA disks, FloSIS achieves up to 30 Gbps for packet capture and disk writing without a single packet drop. Its indexes take up only 0.25% of the stored content while avoiding slow linear disk search and redundant disk access. On a machine with 24 hard disks of 3 TB, this translates into 180 GB for 72 TB total disk space, which could be managed entirely in memory or stored into solid state disks for fast random access. Finally, FloSIS deduplicates 34.5% of the storage space for 67 GB of a real traffic trace only with 256 MB of extra memory consumption for a deduplication table. In terms of performance, it achieves about 15 Gbps zero-drop throughput with real-time flow deduplication.

Source:

This work is presented at 2015 USENIX Annual Technical Conference (ATC) on July 10 2015 in Santa Clara, California (link below).

Associated links

Lan Yoon | Research SEA
Further information:
http://www.researchsea.com

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>