Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First solar cell made of highly ordered molecular frameworks

19.06.2015

New material based on metal-organic frameworks is suited for photovoltaics; publication in the journal Angewandte Chemie International Edition

"We have opened the door to a new room," says Professor Christof Wöll, Director of KIT Institute of Functional Interfaces (IFG). "This new application of metal-organic framework compounds is the beginning only. The end of this development line is far from being reached," the physicist emphasizes.


Organic solar cells made of metal-organic frameworks are highly efficient in producing charge carriers.

Figure: Woell/KIT

Metal-organic frameworks, briefly called MOFs, consist of two basic elements, metal node points and organic molecules, which are assembled to form microporous, crystalline materials. For about a decade, MOFs have been attracting considerable interest of researchers, because their functionality can be adjusted by varying the components. "A number of properties of the material can be changed," Wöll explains. So far, more than 20,000 different MOF types have been developed and used mostly for the storage or separation of gases.

The team of scientists under the direction of KIT has now produced MOFs based on porphyrines. These porphyrine-based MOFs have highly interesting photophysical properties: Apart from a high efficiency in producing charge carriers, a high mobility of the latter is observed. Computations made by the group of Professor Thomas Heine from Jacobs University Bremen, which is also involved in the project, suggest that the excellent properties of the solar cell result from an additional mechanism - the formation of indirect band gaps - that plays an important role in photovoltaics.

Nature uses porphyrines as universal molecules e.g. in hemoglobin and chlorophyll, where these organic dyes convert light into chemical energy. A metal-organic solar cell produced on the basis of this novel porphyrine-MOF is now presented by the researchers in the journal Angewandte Chemie (Applied Chemistry).

The contribution is entitled "Photoinduzierte Erzeugung von Ladungsträgern in epitaktischen MOF-Dünnschichten: hohe Leistung aufgrund einer indirekten elektronischen Bandlücke?" (photo-induced generation of charge carriers in epitactic MOF-thin layers: high efficiency resulting from an indirect electronic band gap?).

"The clou is that we just need a single organic molecule in the solar cell," Wöll says. The researchers expect that the photovoltaic capacity of the material may be increased considerably in the future by filling the pores in the crystalline lattice structure with molecules that can release and take up electric charges.

By means of a process developed at KIT, the crystalline frameworks grow in layers on a transparent, conductive carrier surface and form a homogeneous thin film, so-called SURMOFs. "The SURMOF process is suited in principle for a continuous manufacturing process and also allows for the coating of larger plastic carrier surfaces," Wöll says. Thanks to their mechanical properties, MOF thin films of a few hundred nanometers in thickness can be used for flexible solar cells or for the coating of clothing material or deformable components. While the demand for technical systems converting sunlight into electricity is increasing, organic materials represent a highly interesting alternative to silicon that has to be processed at high costs before it can be used for the photoactive layer of a solar cell.

###

Jinxuan Liu, Wencai Zhou, Jianxi Liu, Ian Howard, Goran Kilibarda, Sabine Schlabach, Damien Coupry, Matthew Addicoat, Satoru Yoneda, Yusuke Tsutsui, Tsuneaki Sakurai, Shu Seki, Zhengbang Wang, Peter Lindemann, Engelbert Redel, Thomas Heine, and Christof Wöll: Photoinduzierte Erzeugung von Ladungsträgern in epitaktischen MOF-Dünnschichten: hohe Leistung aufgrund einer indirekten elektronischen Bandlücke?, Angewandte Chemie, Ausgabe 25/2015. German edition: DOI: 10.1002/ange.201501862, International edition: DOI: 10.1002/anie.201501862

http://onlinelibrary.wiley.com/doi/10.1002/anie.v54.25/issuetoc

Karlsruhe Institute of Technology (KIT) is a public corporation pursuing the tasks of a Baden-Wuerttemberg state university and of a national research center of the Helmholtz Association. The KIT mission combines the three core tasks of research, higher education, and innovation. With about 9,400 employees and 24,500 students, KIT is one of the big institutions of research and higher education in natural sciences and engineering in Europe.

Since 2010, the KIT has been certified as a family-friendly university.

Media Contact

Monika Landgraf
presse@kit.edu
49-721-608-47414

 @KITKarlsruhe

http://www.kit.edu/index.php 

Monika Landgraf | EurekAlert!

More articles from Information Technology:

nachricht Japanese researchers develop ultrathin, highly elastic skin display
19.02.2018 | University of Tokyo

nachricht Why bees soared and slime flopped as inspirations for systems engineering
19.02.2018 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>