Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First on-chip nanoscale optical quantum memory developed

13.09.2017

Smallest-yet optical quantum memory device is a storage medium for optical quantum networks with the potential to be scaled up for commercial use

For the first time, an international team led by engineers at Caltech has developed a computer chip with nanoscale optical quantum memory.


Artist's representation of the quantum memory device.

Credit: Ella Maru Studio

Usage Restrictions: For use in news stories only

Quantum memory stores information in a similar fashion to the way traditional computer memory does, but on individual quantum particles--in this case, photons of light. This allows it to take advantage of the peculiar features of quantum mechanics (such as superposition, in which a quantum element can exist in two distinct states simultaneously) to store data more efficiently and securely.

"Such a device is an essential component for the future development of optical quantum networks that could be used to transmit quantum information," says Andrei Faraon (BS '04), assistant professor of applied physics and materials science in the Division of Engineering and Applied Science at Caltech, and the corresponding author of a paper describing the new chip.

The study appeared online ahead of publication by Science magazine on August 31.

"This technology not only leads to extreme miniaturization of quantum memory devices, it also enables better control of the interactions between individual photons and atoms," says Tian Zhong, lead author of the study and a Caltech postdoctoral scholar. Zhong is also an acting assistant professor of molecular engineering at the University of Chicago, where he will set up a laboratory to develop quantum photonic technologies in March 2018.

The use of individual photons to store and transmit data has long been a goal of engineers and physicists because of their potential to carry information reliably and securely. Because photons lack charge and mass, they can be transmitted across a fiber optic network with minimal interactions with other particles.

The new quantum memory chip is analogous to a traditional memory chip in a computer. Both store information in a binary code. With traditional memory, information is stored by flipping billions of tiny electronic switches either on or off, representing either a 1 or a 0. That 1 or 0 is known as a bit. By contrast, quantum memory stores information via the quantum properties of individual elementary particles (in this case, a light particle). A fundamental characteristic of those quantum properties--which include polarization and orbital angular momentum--is that they can exist in multiple states at the same time. This means that a quantum bit (known as a qubit) can represent a 1 and a 0 at the same time.

To store photons, Faraon's team created memory modules using optical cavities made from crystals doped with rare-earth ions. Each memory module is like a miniature racetrack, measuring just 700 nanometers wide by 15 microns long--on the scale of a red blood cell. Each module was cooled to about 0.5 Kelvin--just above Absolute Zero (0 Kelvin, or -273.15 Celsius)--and then a heavily filtered laser pumped single photons into the modules. Each photon was absorbed efficiently by the rare-earth ions with the help of the cavity.

The photons were released 75 nanoseconds later, and checked to see whether they had faithfully retained the information recorded on them. Ninety-seven percent of the time, they had, Faraon says.

Next, the team plans to extend the time that the memory can store information, as well as its efficiency. To create a viable quantum network that sends information over hundreds of kilometers, the memory will need to accurately store data for at least one millisecond. The team also plans to work on ways to integrate the quantum memory into more complex circuits, taking the first steps toward deploying this technology in quantum networks.

###

The study is titled "Nanophotonic rare-earth quantum memory with optically controlled retrieval." Other Caltech coauthors include postdoctoral researcher John G. Bartholomew; graduate students Jonathan M. Kindem (MS '17), Jake Rochman, and Ioana Craiciu (MS '17); and former graduate student Evan Miyazono (MS '15, PhD '17). Additional authors are from the University of Verona in Italy; the University of Parma in Italy; the National Institute of Standards and Technology in Colorado; and the Jet Propulsion Laboratory, which is managed for NASA by Caltech. This research was funded by the National Science Foundation, the Air Force Office of Scientific Research, and the Defense Advanced Research Projects Agency.

Media Contact

Robert Perkins
rperkins@caltech.edu
626-395-1862

 @caltech

http://www.caltech.edu 

Robert Perkins | EurekAlert!

Further reports about: MS individual photons nanoscale photons quantum memory

More articles from Information Technology:

nachricht Researchers develop 3-D-printed biomaterials that degrade on demand
08.09.2017 | Brown University

nachricht Reproducing the computational environments of experiments
05.09.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

Im Focus: Using Mirrors to Improve the Quality of Light Particles

Scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute have succeeded in dramatically improving the quality of individual photons generated by a quantum system. The scientists have successfully put a 10-year-old theoretical prediction into practice. With their paper, published recently in Physical Review X, they have taken an important step towards future applications in quantum information technology.

For a number of years, scientists have been working on using electron spins to store and process information. A possible approach is to use a quantum system in...

Im Focus: High-speed Quantum Memory for Photons

Physicists from the University of Basel have developed a memory that can store photons. These quantum particles travel at the speed of light and are thus suitable for high-speed data transfer. The researchers were able to store them in an atomic vapor and read them out again later without altering their quantum mechanical properties too much. This memory technology is simple and fast and it could find application in a future quantum Internet. The journal Physical Review Letters has published the results.

Even today, fast data transfer in telecommunication networks employs short light pulses. Ultra broadband technology uses optical fiber links through which...

Im Focus: Discovery of the most accelerated binary pulsar

Fifty years after Jocelyn Bell discovered the first pulsar, students are no longer going through reams of paper from pen chart recorders but instead search through 1,000s of terabytes of data to find these enigmatic pulsating radio stars. The most extreme binary pulsar system so far, with accelerations of up to 70 g has been discovered by researchers at the Max Planck Institute for Radio Astronomy (MPIfR) in Bonn. At their closest approach the orbit of the pulsar and its companion neutron star would easily fit inside the radius of the Sun.

Although most of the more than 2,500 pulsars known are solitary objects, a few are found in tight binary systems. The discovery of the first of these, the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

IVAM’s LaserForum visits the Swiss canton of St. Gallen with the topic ultrashort pulse lasers

06.09.2017 | Event News

 
Latest News

Study sets new distance record for medical drone transport

13.09.2017 | Transportation and Logistics

First on-chip nanoscale optical quantum memory developed

13.09.2017 | Information Technology

Graphene based terahertz absorbers

13.09.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>