Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


First circularly polarized light detector on a silicon chip


Promises to expand use of polarized light for drug screening, surveillance, optical communications

Invention of the first integrated circularly polarized light detector on a silicon chip opens the door for development of small, portable sensors that could expand the use of polarized light for drug screening, surveillance, optical communications and quantum computing, among other potential applications.

The circularly polarized light detector on a chip, on the left, performs the same function as the conventional, optically based detector on the right.

Credit: Anne Rayner, Vanderbilt University

The new detector was developed by a team of Vanderbilt University engineers directed by Assistant Professor of Mechanical Engineering Jason Valentine working with researchers at Ohio University. The work is described in an article published on Sept. 22 in the online journal Nature Communications.

"Although it is largely invisible to human vision, the polarization state of light can provide a lot of valuable information," said Valentine. "However, the traditional way of detecting it requires several optical elements that are quite bulky and difficult to miniaturize. We have managed to get around this limitation by the use of 'metamaterials' - materials engineered to have properties that are not found in nature."

Polarized light comes in two basic forms: linear and circular. In a ray of unpolarized light, the electrical fields of individual photons are oriented in random directions. In linearly polarized light the fields of all the photons lie in the same plane. In circularly polarized light (CPL), the fields lie in a plane that continuously rotates through 360 degrees. As a result there are two types of circularly polarized light, right-handed and left-handed.

Humans cannot readily distinguish the polarization state of light, but there are a number of other species that possess "p-vision." These include cuttlefish, mantis shrimp, bees, ants and crickets.

Cuttlefish also produce varying patterns of polarized light on their skin, which has led scientists to hypothesize that they use this as a secret communication channel that neither their predators or prey can detect. This has led to the suggestion that CPL could be used to increase the security of optical communications by including polarized channels that would be invisible to those who don't have the proper detectors.

Unlike unpolarized light, CPL can detect the difference between right-handed and left-handed versions of molecules. Just like hands and gloves, most biological molecules come in mirror-image pairs. This property is called chirality. For example, cells contain only left-handed amino acids but they metabolize only right-handed sugars (a fact utilized by some artificial sweeteners which use left-hand forms of sugar which taste just as sweet as the right-hand version but which the body cannot convert into fat).

Chirality can be dramatically important in drugs because their biological activity is often related to their handedness. For example, one form of dopamine is effective in the management of Parkinson's disease while the other form reduces the number of white blood cells. One form of thalidomide alleviates morning sickness while the other causes birth defects. The number of chiral drugs in use today is estimated to be 2,500 and most new drugs under development are chiral.

"Inexpensive CPL detectors could be integrated into the drug production process to provide real time sensing of drugs," said Vanderbilt University doctoral student Wei Li, who played a key role in designing and testing the device. "Portable detectors could be used to determine drug chirality in hospitals and in the field."

The metamaterial that the researchers developed to detect polarized light consists of silver nanowires laid down in a sub-microscopic zigzag pattern on an extremely thin sheet of acrylic fixed to an optically thick silver plate. This metamaterial is attached to the bottom of a silicon wafer with the nanowire side up.

The nanowires generate a cloud of free-flowing electrons that produce "plasmon" density waves that efficiently absorb energy from photons that pass through the silicon wafer. The absorption process creates "hot" or energetic electrons that shoot up into the wafer where they generate a detectable electrical current.

The zigzag pattern can be made either right-handed or left-handed. When it is right-handed, the surface absorbs right circularly polarized light and reflects left circularly polarized light. When it is left-handed it absorbs left circularly polarized light and reflects right circularly polarized light. By including both right-handed and left-handed surface patterns, the sensor can differentiate between right and left circularly polarized light.

There have been two previous efforts to make solid-state polarized light detectors. According to Li, one used chiral organic materials that are unstable in air, worked only in a narrow range of wavelengths and had a limited power range. Another was based on a more complicated multilayer design that only worked at low temperatures.

"That is the beauty of metamaterials: You can design them to work in the fashion you desire," said Li.

The efficiency of their prototype is 0.2 percent - too low to be commercially viable. Now that they have proven the viability of their approach, however, they have a number of ideas for how they can boost the efficiency to a level comparable to conventional photodetectors.


The research was supported by National Science Foundation grant CBET-1336455, Office of Naval Research grant N00014-14-1-0475, U.S. Army Research Office grant W911NF-12-1-0407 and the Volkswagen Foundation.

David F. Salisbury | EurekAlert!

More articles from Information Technology:

nachricht Next Generation Cryptography
20.03.2018 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation
19.03.2018 | Technische Informationsbibliothek (TIB)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

Don't Give the Slightest Chance to Toxic Elements in Medicinal Products

23.03.2018 | Life Sciences

Sensitive grip

23.03.2018 | Materials Sciences

No compromises: Combining the benefits of 3D printing and casting

23.03.2018 | Process Engineering

Science & Research
Overview of more VideoLinks >>>