Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EXTOLL introduces the HPC network chip TOURMALET™

22.07.2015

EXTOLL GmbH introduces its novel network chip and PCIe Board TOURMALET 100G. This high-performance network ASIC integrates the network interface controller function as well as the network switching functionality in a single chip solution enabling direct networks without external switches. Superior performance of 850ns MPI latency, 8.5 GB/s MPI bandwidth and a message rate in excess of 70 million messages per second could already be shown.

TOURMALET 100G incorporates the complete EXTOLL network technology in a single-chip solution. The EXTOLL network is a direct network, i.e. no external switches are required. The chip supports 6+1 links, where the 7th link can be used for break-out functionalities, i.e. attaching I/O, storage, additional accelerators, etc. while at the same time leaving the network topology of the compute network untouched. The network links of Tourmalet 100G run at 100Gb/s physical speed and the ASIC features a PCIe Gen3 x16 interface to connect to CPUs or Accelerators.

The chip yields outstanding performance data. In HPC applications, latency (time required for a signal to travel from one node to another), message rate (number of messages per second that can be processed) and bandwidth (amount of data per second that can be transferred) are decisive measures. In first measurements, TOURMALET 100G already showed 0.85µs MPI latency, more than 70 million MPI messages per node from its potential of well above 100 million MPI messages per second and 8.5 GB/s MPI bandwidth.

Additionally, TOURMALET 100G also provides a host of extra features. Examples are the PCI root port mode which allows for hostless connection of PCIe Accelerators to the network: TOURMALET 100G can directly boot and control co-procesors like Intel® Xeon PhiTM “Knights Corner” (KNC) or GPU accelerator cards. TOURMALET 100G also supports Global GPU Address Space (GGAS) technology and features a sophisticated switch and networking layer.

EXTOLL GmbH has developed a complete ecosystem for its network consisting of PCI Express plug-in cards, link connectors, electrical network cables, active optical cables, software stack and management software. MPI as the de-facto standard for HPC is of course supported, and MPI applications can be run without the need to modify the source code.

EXTOLL GmbH showcased TOURMALET 100G for the first time at the International Supercomputing (ISC) fair at Frankfurt in July 2015 also showing its superior performance with various live-demos. The hostless-feature is strikingly demonstrated by EXTOLL’s novel 2-phase immersion cooling system GreenICE™ with super-dense electronics: 32 nodes formed by TOURMALET 100G and Intel Xeon Phi “Knights Corner” (KNC) yield 38.4 TFLOPS peak DP-floating point performance within a 19” x 9U chassis.
“EXTOLL’s network technology is a disruptive innovation in the field of HPC interconnect.” – says Prof. Lippert from Juelich Super Computing Centre – “High performance, support of hostless nodes together with GreenICE makes it a promising candidate for future Exascale Supercomputers.”

EXTOLL’s GreenICE is used for part of the booster nodes of the DEEP-project (Dynamical Exascale Entry Platform), funded by the European Commission through the FP7 program under grant agreement no. 287530. In the follow-up project DEEP-ER, EXTOLL’s TOURMALET will be used for the booster interconnect network.

About EXTOLL GmbH:
EXTOLL GmbH is a Mannheim, Germany, based privately held company dedicated to high-performance computing (HPC). Its core product is an HPC networking solution including completely in-house designed ASICs, PCIe Boards, cabling solutions and software stack. Additionally, EXTOLL GmbH provides extremely efficient and dense 2-phase immersion cooling solutions.

EXTOLL company contacts:

Dr. Ulrich Krackhardt
CEO / COO
ulrich.krackhardt@extoll.de

Dr. Mondrian Nüssle
CEO / CTO
mondrian.nuessle@extoll.de

Dr. Ellen Latzin | idw - Informationsdienst Wissenschaft
Further information:
http://www.badw.de

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>