Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Excellent technique on movement analysis

01.12.2014

How computers recognise videos

Driver assistance systems that recognise obstacles in road traffic, visual effects in films like Matrix, computer-animated characters and combined imaging processes in medicine: behind all these technologies lies a process that information researchers have been constantly working on improving for years, the so-called optical flow.


Computer-based reconstruction of facial features on the basis of video recordings. Joint work with researchers from the Max-Planck-Institute for Computer Science, Saarbrücken.

University of Stuttgart

Prof. Andrés Bruhn from the Institute of Visualisation and Interactive Systems at the University of Stuttgart is a specialist in this field. At the “European Conference on Computer Vision“ in Zürich recently he was awarded the “Jan Koenderink Prize for Fundamental Contributions in Computer Vision“ jointly with colleagues for a method developed ten years ago. This is one of the most renowned prizes in the field of machine vision and honours works that have proven particularly valuable after a decade.

How can computers be put in a position to recognise movements in a video as accurately as possible? This question has been occupying computer science researchers for around 30 years. Since receiving his doctorate Prof. Andrés Bruhn has been dealing with the optical flow in order to accelerate the machine vision of video images and to improve them in terms of quality.

But what exactly is an optical flow? Broadly speaking what lies behind the method is an algorithm that observes each pixel of an individual video image and estimates its movement with regard to its reference image.

Numerous technologies can be realised using this principle. For example real non-existent intermediate images can be created in order to generate slow motion effects without loss of quality in the film industry or create computer-generated film sequences from video recordings. The face of an actor can be reconstructed in this way with realistic facial expressions and gestures and then be replaced by a virtual character. Also applications in the automotive field are based on the calculation of flow fields.

In this respect there are driver assistance systems that recognise distances to obstacles based on camera recordings, identify moving objects, predict collisions or make other statements on the traffic situation. Another sector of the economy in which the optical flow is used is medical image processing. For example recordings of different imaging processes are superimposed there to be able to investigate the growth of a tumour in more concrete terms, for instance.

“The available optical flow methods have proved their worth in many applications“, said Prof. Andrés Bruhn, “but still they are subject to a great number of restrictions. To minimise these further and to develop further fields of application is the objective of our work.“

His research team particularly deal with the utilisation of recordings with bad lighting or rapid movement or colour changes but also the concrete estimate of object arrangements in a room and the basic improvement of reconstructed computer models are the focus of their work.

This year Andrés Bruhn was awarded the Koenderink Prize for a method he had already developed with his colleagues Thomas Brox, Nils Papenberg and Joachim Weickert in 2004 whilst doing his doctorate at the University of Saarland. At the time the research team succeeded in greatly increasing the accuracy compared to methods already available.

The award is one of the most renowned prizes in the field of machine vision and honours works that have particularly proven their worth after a decade. Since its publication the work has been quoted over 1,200 times, clearly showing the special value of the work for science.

You can find the specialist article at
http://link.springer.com/chapter/10.1007%2F978-3-540-24673-2_3

Further information:
Tina Barthelmes, University of Stuttgart, Visualisation Institute (VISUS), Tel. 0711/685-88604,
Email: tina.barthelmes (at) visus.uni-stuttgart.de
Prof. Andrés Bruhn, Institute of Visualisation and Interactive Systems, Tel.: 0711/685-88439,
Email: andres.bruhn (at) vis.uni-stuttgart.de
Birgit Vennemann, University of Stuttgart, Department of University Communication, Tel. 0711/685-82122,
Email: birgit.vennemann (at) hkom.uni-stuttgart.de

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-stuttgart.de/

More articles from Information Technology:

nachricht Cloud technology: Dynamic certificates make cloud service providers more secure
15.01.2018 | Technische Universität München

nachricht New discovery could improve brain-like memory and computing
10.01.2018 | University of Minnesota

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>