Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Excellent technique on movement analysis

01.12.2014

How computers recognise videos

Driver assistance systems that recognise obstacles in road traffic, visual effects in films like Matrix, computer-animated characters and combined imaging processes in medicine: behind all these technologies lies a process that information researchers have been constantly working on improving for years, the so-called optical flow.


Computer-based reconstruction of facial features on the basis of video recordings. Joint work with researchers from the Max-Planck-Institute for Computer Science, Saarbrücken.

University of Stuttgart

Prof. Andrés Bruhn from the Institute of Visualisation and Interactive Systems at the University of Stuttgart is a specialist in this field. At the “European Conference on Computer Vision“ in Zürich recently he was awarded the “Jan Koenderink Prize for Fundamental Contributions in Computer Vision“ jointly with colleagues for a method developed ten years ago. This is one of the most renowned prizes in the field of machine vision and honours works that have proven particularly valuable after a decade.

How can computers be put in a position to recognise movements in a video as accurately as possible? This question has been occupying computer science researchers for around 30 years. Since receiving his doctorate Prof. Andrés Bruhn has been dealing with the optical flow in order to accelerate the machine vision of video images and to improve them in terms of quality.

But what exactly is an optical flow? Broadly speaking what lies behind the method is an algorithm that observes each pixel of an individual video image and estimates its movement with regard to its reference image.

Numerous technologies can be realised using this principle. For example real non-existent intermediate images can be created in order to generate slow motion effects without loss of quality in the film industry or create computer-generated film sequences from video recordings. The face of an actor can be reconstructed in this way with realistic facial expressions and gestures and then be replaced by a virtual character. Also applications in the automotive field are based on the calculation of flow fields.

In this respect there are driver assistance systems that recognise distances to obstacles based on camera recordings, identify moving objects, predict collisions or make other statements on the traffic situation. Another sector of the economy in which the optical flow is used is medical image processing. For example recordings of different imaging processes are superimposed there to be able to investigate the growth of a tumour in more concrete terms, for instance.

“The available optical flow methods have proved their worth in many applications“, said Prof. Andrés Bruhn, “but still they are subject to a great number of restrictions. To minimise these further and to develop further fields of application is the objective of our work.“

His research team particularly deal with the utilisation of recordings with bad lighting or rapid movement or colour changes but also the concrete estimate of object arrangements in a room and the basic improvement of reconstructed computer models are the focus of their work.

This year Andrés Bruhn was awarded the Koenderink Prize for a method he had already developed with his colleagues Thomas Brox, Nils Papenberg and Joachim Weickert in 2004 whilst doing his doctorate at the University of Saarland. At the time the research team succeeded in greatly increasing the accuracy compared to methods already available.

The award is one of the most renowned prizes in the field of machine vision and honours works that have particularly proven their worth after a decade. Since its publication the work has been quoted over 1,200 times, clearly showing the special value of the work for science.

You can find the specialist article at
http://link.springer.com/chapter/10.1007%2F978-3-540-24673-2_3

Further information:
Tina Barthelmes, University of Stuttgart, Visualisation Institute (VISUS), Tel. 0711/685-88604,
Email: tina.barthelmes (at) visus.uni-stuttgart.de
Prof. Andrés Bruhn, Institute of Visualisation and Interactive Systems, Tel.: 0711/685-88439,
Email: andres.bruhn (at) vis.uni-stuttgart.de
Birgit Vennemann, University of Stuttgart, Department of University Communication, Tel. 0711/685-82122,
Email: birgit.vennemann (at) hkom.uni-stuttgart.de

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-stuttgart.de/

More articles from Information Technology:

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

nachricht Internet of things made simple: One sensor package does work of many
11.05.2017 | Carnegie Mellon University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Supercomputing helps researchers understand Earth's interior

23.05.2017 | Earth Sciences

Study identifies RNA molecule that shields breast cancer stem cells from immune system

23.05.2017 | Life Sciences

Turmoil in sluggish electrons’ existence

23.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>