Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Excellent technique on movement analysis

01.12.2014

How computers recognise videos

Driver assistance systems that recognise obstacles in road traffic, visual effects in films like Matrix, computer-animated characters and combined imaging processes in medicine: behind all these technologies lies a process that information researchers have been constantly working on improving for years, the so-called optical flow.


Computer-based reconstruction of facial features on the basis of video recordings. Joint work with researchers from the Max-Planck-Institute for Computer Science, Saarbrücken.

University of Stuttgart

Prof. Andrés Bruhn from the Institute of Visualisation and Interactive Systems at the University of Stuttgart is a specialist in this field. At the “European Conference on Computer Vision“ in Zürich recently he was awarded the “Jan Koenderink Prize for Fundamental Contributions in Computer Vision“ jointly with colleagues for a method developed ten years ago. This is one of the most renowned prizes in the field of machine vision and honours works that have proven particularly valuable after a decade.

How can computers be put in a position to recognise movements in a video as accurately as possible? This question has been occupying computer science researchers for around 30 years. Since receiving his doctorate Prof. Andrés Bruhn has been dealing with the optical flow in order to accelerate the machine vision of video images and to improve them in terms of quality.

But what exactly is an optical flow? Broadly speaking what lies behind the method is an algorithm that observes each pixel of an individual video image and estimates its movement with regard to its reference image.

Numerous technologies can be realised using this principle. For example real non-existent intermediate images can be created in order to generate slow motion effects without loss of quality in the film industry or create computer-generated film sequences from video recordings. The face of an actor can be reconstructed in this way with realistic facial expressions and gestures and then be replaced by a virtual character. Also applications in the automotive field are based on the calculation of flow fields.

In this respect there are driver assistance systems that recognise distances to obstacles based on camera recordings, identify moving objects, predict collisions or make other statements on the traffic situation. Another sector of the economy in which the optical flow is used is medical image processing. For example recordings of different imaging processes are superimposed there to be able to investigate the growth of a tumour in more concrete terms, for instance.

“The available optical flow methods have proved their worth in many applications“, said Prof. Andrés Bruhn, “but still they are subject to a great number of restrictions. To minimise these further and to develop further fields of application is the objective of our work.“

His research team particularly deal with the utilisation of recordings with bad lighting or rapid movement or colour changes but also the concrete estimate of object arrangements in a room and the basic improvement of reconstructed computer models are the focus of their work.

This year Andrés Bruhn was awarded the Koenderink Prize for a method he had already developed with his colleagues Thomas Brox, Nils Papenberg and Joachim Weickert in 2004 whilst doing his doctorate at the University of Saarland. At the time the research team succeeded in greatly increasing the accuracy compared to methods already available.

The award is one of the most renowned prizes in the field of machine vision and honours works that have particularly proven their worth after a decade. Since its publication the work has been quoted over 1,200 times, clearly showing the special value of the work for science.

You can find the specialist article at
http://link.springer.com/chapter/10.1007%2F978-3-540-24673-2_3

Further information:
Tina Barthelmes, University of Stuttgart, Visualisation Institute (VISUS), Tel. 0711/685-88604,
Email: tina.barthelmes (at) visus.uni-stuttgart.de
Prof. Andrés Bruhn, Institute of Visualisation and Interactive Systems, Tel.: 0711/685-88439,
Email: andres.bruhn (at) vis.uni-stuttgart.de
Birgit Vennemann, University of Stuttgart, Department of University Communication, Tel. 0711/685-82122,
Email: birgit.vennemann (at) hkom.uni-stuttgart.de

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-stuttgart.de/

More articles from Information Technology:

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>