Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers develop new methods to speed up simulations in computational grand challenge

27.03.2015

Engineers at the University of California, San Diego, have developed a new family of methods to significantly increase the speed of time-resolved numerical simulations in computational grand challenge problems.

Such problems often arise from the high-resolution approximation of the partial differential equations governing complex flows of fluids or plasmas. The breakthrough could be applied to simulations that include millions or billions of variables, including turbulence simulations.


Stability regions |σ(z)| ? 1 for the low-storage IMEXRK schemes considered in this paper.

Credit: Thomas Bewley/Jacobs School of Engineering/UC San Diego

Modern computers are generally built from commodity hardware developed for serving and surfing the web. When applied to cutting-edge problems in scientific computing, computers built from such general-purpose hardware usually spend most of their time moving data around in memory, and the hardware dedicated to floating point computations (that is, the actual addition and multiplication of numbers) spends most of its time idle.

The small memory footprint of the new schemes developed at UC San Diego means that numerical problems of a given size will run much faster on a given computer, and that even larger numerical problems may be considered.

"Moving information around in memory is the bottleneck in almost all large-scale numerical simulations today," said Thomas Bewley, a mechanical engineering professor who leads the Flow Control Lab at the Jacobs School of Engineering at UC San Diego.

"The remarkable feature of the new family of schemes developed in this work is that they require significantly less memory in the computer for a given size simulation problem than existing high-order methods of the same class, while providing excellent numerical stability, accuracy, and computational efficiency."

Complex systems such as flows of fluids and plasmas generally evolve as a result of a combination of physical effects, such as diffusion and convection. Some of these effects are linear and incorporate many spatial derivatives (that is, they are characterized by a large range of characteristic time scales, and are thus referred to as "stiff"). These terms are best handled with "implicit" methods, which require the solution of many simple simultaneous equations using matrix algebra and iterative solvers.

Other effects are nonlinear and incorporate fewer spatial derivatives (that is, they are characterized by a smaller range of characteristic time scales, and are thus referred to as "nonstiff"). These terms are most easily handled with explicit methods, which treat the propagation of each equation independently. If the stiff terms are treated with explicit methods, a severe restriction arises on the timestep, which slows the simulation; if the nonstiff terms are treated with implicit methods, complex and computationally expensive iterative solvers must be used.

The new "implicit/explicit" or IMEX time marching schemes developed at UC San Diego thus marry together two algorithms for time-resolved simulations of the standard "Runge-Kutta" or RK form. The implicit algorithm is applied to the stiff terms of the problem, and the explicit algorithm is applied to the nonstiff terms of the problem. The two algorithms so joined are each endowed with good numerical properties, such as excellent stability and high accuracy, and, notably, maintain this high accuracy when working together in concert. The compatible pairs of simulation methods so developed are known as IMEXRK schemes.

"Searching for the right combination of the dozens of parameters that make these new IMEXRK algorithms work well was like finding a needle in a haystack, and required a tedious search over a very large parameter space, combined with the delicate codification of various numerical intuition to simplify the search. It took almost one year to complete," said Daniele Cavaglieri, a Ph.D. student and co-author of the paper.

Researchers describe the new methods in the January 2015 issue of the Journal of Computational Physics.

###

Low-storage implicit/explicit Runge-Kutta schemes for the simulation of stiff high-dimensional OED systems: http://www.sciencedirect.com/science/article/pii/S0021999115000352

Media Contact

Ioana Patringenaru
ipatrin@ucsd.edu
858-822-0899

 @UCSanDiego

http://www.ucsd.edu 

Ioana Patringenaru | EurekAlert!

Further reports about: accuracy characteristic effects fluids numerical simulations require spatial stiff treated

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>