Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy efficiency you can count on

02.12.2014

New ENBUS! smartphone app helps home owners on the way to energy efficiency

The building sector accounts for 40 percent of primary energy consumption in Europe. Home owners seeking for energy efficiency are faced with confusing and sometimes contradictory information. Now, Fraunhofer IAO has developed a smartphone app in the EU project ENBUS! that helps home owners calculate the tangible benefits of energy efficiency measures before investing.


New ENBUS! smartphone app helps home owners on the way to energy efficiency

© Fraunhofer IAO

“I’m an energy saver” – today this 1980s slogan is experiencing a revival as part of the “energy efficiency” movement. But just like back then, very few people are doing it purely for environmental reasons, since many products and solutions promise significant savings.

Energy efficiency measures are intended not only to sustainably increase a house’s value, but also to improve comfort, preserve the building’s structure and appeal visually. Above all, the measures must make sense – financially and ecologically. This requires return-on-investment figures laying on the table in advance.

To guide home owners through the information jungle surrounding energy efficiency in buildings, Fraunhofer IAO and partners from research and industry have developed an app as part of the EU project ENBUS! The app provides homeowners with a free and neutral benefit assessment of energy efficiency measures.

When planning a renovation, estimating the benefits is important but also quite difficult because the building industry and manufacturers of energy-efficient building materials and appliances promote their own offers while providing their own biased advice. Unbiased experts, on the other hand, are expensive and the process is complex. This deters many homeowners.

In the ENBUS! app users start with selecting a building type and its location. The software then models the energy savings that could be made with the wide range of products and building materials stored in the app, and delivers additional support relating to energy efficiency in buildings.

“We’re doing more than just show that energy efficiency pays off in theory,” says Dr. Thomas Fischer, project manager at Fraunhofer IAO. “We’re showing home owners how their investment translates into a concrete economic benefit.” Only then, believes Dr. Fischer, will home owners be adequately supported on the path to energy efficiency and be able to make decisions based on concrete figures measured out in euros and cents.

The ENBUS! app is currently available as a prototype for iPhone and iPad. In the future, the software will be rolled out to other platforms and the content will be comprehensively supplemented. The aim is a solution that reproduces real buildings as accurately as possible and is still easy to use. In accordance with the user’s requirements, the system can then make comprehensive proposals for energy efficient improvements based on the individual case.

Contact

Dr. Thomas Fischer
Technology Management
Fraunhofer IAO
Nobelstraße 12
70569 Stuttgart, Germany
Phone +49 711 970-2037
thomas.fischer@iao.fraunhofer.de


Weitere Informationen:

http://www.iao.fraunhofer.de/lang-en/business-areas/technology-innovation-management/1116-energy-efficiency-you-can-count-on.html
http://www.enbus.eu

Juliane Segedi | Fraunhofer-Institut

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>