Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electric field shakes a magnet in one trillionth of a sec. Novel method of spin control discovered

04.10.2016

An international team of scientists from Germany, the Netherlands and Russia has successfully demonstrated a novel, highly efficient and ultrafast magnetization control scheme by employing electromagnetic waves oscillating at terahertz frequencies. The new concept will be published in the upcoming issue of Nature Photonics.

Although magnetism has been known from ancient times, a fundamental understanding of the origin of this physical phenomenon has been achieved only in the last 100 years.


An intense THz pulse (red waveform) changes the electronic orbitals of a magnetic material leading to oscillation of spins (compass needles).

Dr. Rostislav Mikhaylovskiy – Only to be used in connection with coverage about this press release.

Today, the simplest model of a magnet is based on electrons orbiting the atomic nuclei as the planets revolve around the sun. Moreover, like the planets gyrate around their rotational axes, the electrons exhibit a similar spinning.

Due to this spinning motion, an electron behaves as an elementary magnet, where the “spin” can be imagined as the quantum part of a compass needle. In many materials, the spins point in certain directions determined by the quantum mechanical properties of the orbital motion of the electrons. This direction is called the magnetic anisotropy axis.

The synergy of very many “needles” in a magnet can form magnetically polarized states like those used to store information in common hard drives. Opposite polarities of the needles (comparable to “north” and “south” of a real compass) correspond to the “0” and “1” states of a bit of information. In state-of-the-art magnetic recording technology, these bits are altered between “0” and “1” with the help of an external magnetic field strong enough to overcome the magnetic anisotropy axis.

The switching mechanism employed is physically restricted to a certain speed, so such technology is quickly reaching its fundamental limits. However, the rapidly increasing amount of information being recorded and archived calls for ever-faster magnetic recording. To meet this challenge, an international team of scientists from Regensburg, Nijmegen, Moscow, and Berlin has investigated a conceptually new way to control magnetism in an extremely rapid fashion by way of oscillating electric fields.

The researchers used the Regensburg high-field terahertz radiation source to generate strong pulses of electromagnetic radiation with duration on the order of one picosecond (1 picosecond = 10-12 s, the trillionth of a second). The centre frequency of the electromagnetic wave pulses is one terahertz (1 THz = 1012 Hz), i.e. between microwaves and visible light.

The terahertz electric field is strong enough to induce a voltage of a million volts over a distance of one centimeter. It thereby perturbs the orbital motion of the electrons and deflects the direction of the magnetic anisotropy axis. The spins have to follow their new equilibrium axis and start to oscillate.

Previously, researchers successfully used pulses of visible light or THz magnetic fields to deflect spins, but the interactions they employed were comparably weak. In contrast, in the present experiment, the amplitude of the magnetization oscillations scales quadratically with the driving THz electric field. Due to this nonlinear scaling, comparably weak THz fields (likely about one tenth of the ones expected for existing methods) should be sufficient to induce such strong oscillations in the spins that they change their directions.

This process would correspond to writing a bit of information into a magnetic storage device. Therefore, this new finding addresses the long-term technological ambition of a direct, high-speed manipulation of magnetic data bits by an electric field pulse. Additionally, for the first time, a nonlinear interaction mechanism between spins and short THz pulses has been exploited, marking a milestone of photonics on its own. These findings are of great importance for the understanding of light-magnetism interactions on extremely short timescales and for information technology of the future.


Original publication:
S. Baierl, M. Hohenleutner, T. Kampfrath, A.K. Zvezdin, A.V. Kimel, R. Huber and R.V. Mikhaylovskiy,
Nonlinear spin control by terahertz-driven anisotropy fields, Nature Photonics 2016
Publication: DOI: 10.1038/NPHOTON.2016.181


Contact:
Prof. Dr. Rupert Huber
Universität Regensburg
Chair for experimental and applied physics
phone: ++49 941 943-2071
e-mail: rupert.huber@ur.de

Dr. Rostislav Mikhaylovskiy
Radboud University
Institute for Molecules and Materials
phone: ++31 24365 3094
e-mail: r.mikhaylovskiy@science.ru.nl

Petra Riedl | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-regensburg.de/

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

Researchers identify cause of hereditary skeletal muscle disorder

22.02.2017 | Health and Medicine

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>