Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electric field shakes a magnet in one trillionth of a sec. Novel method of spin control discovered

04.10.2016

An international team of scientists from Germany, the Netherlands and Russia has successfully demonstrated a novel, highly efficient and ultrafast magnetization control scheme by employing electromagnetic waves oscillating at terahertz frequencies. The new concept will be published in the upcoming issue of Nature Photonics.

Although magnetism has been known from ancient times, a fundamental understanding of the origin of this physical phenomenon has been achieved only in the last 100 years.


An intense THz pulse (red waveform) changes the electronic orbitals of a magnetic material leading to oscillation of spins (compass needles).

Dr. Rostislav Mikhaylovskiy – Only to be used in connection with coverage about this press release.

Today, the simplest model of a magnet is based on electrons orbiting the atomic nuclei as the planets revolve around the sun. Moreover, like the planets gyrate around their rotational axes, the electrons exhibit a similar spinning.

Due to this spinning motion, an electron behaves as an elementary magnet, where the “spin” can be imagined as the quantum part of a compass needle. In many materials, the spins point in certain directions determined by the quantum mechanical properties of the orbital motion of the electrons. This direction is called the magnetic anisotropy axis.

The synergy of very many “needles” in a magnet can form magnetically polarized states like those used to store information in common hard drives. Opposite polarities of the needles (comparable to “north” and “south” of a real compass) correspond to the “0” and “1” states of a bit of information. In state-of-the-art magnetic recording technology, these bits are altered between “0” and “1” with the help of an external magnetic field strong enough to overcome the magnetic anisotropy axis.

The switching mechanism employed is physically restricted to a certain speed, so such technology is quickly reaching its fundamental limits. However, the rapidly increasing amount of information being recorded and archived calls for ever-faster magnetic recording. To meet this challenge, an international team of scientists from Regensburg, Nijmegen, Moscow, and Berlin has investigated a conceptually new way to control magnetism in an extremely rapid fashion by way of oscillating electric fields.

The researchers used the Regensburg high-field terahertz radiation source to generate strong pulses of electromagnetic radiation with duration on the order of one picosecond (1 picosecond = 10-12 s, the trillionth of a second). The centre frequency of the electromagnetic wave pulses is one terahertz (1 THz = 1012 Hz), i.e. between microwaves and visible light.

The terahertz electric field is strong enough to induce a voltage of a million volts over a distance of one centimeter. It thereby perturbs the orbital motion of the electrons and deflects the direction of the magnetic anisotropy axis. The spins have to follow their new equilibrium axis and start to oscillate.

Previously, researchers successfully used pulses of visible light or THz magnetic fields to deflect spins, but the interactions they employed were comparably weak. In contrast, in the present experiment, the amplitude of the magnetization oscillations scales quadratically with the driving THz electric field. Due to this nonlinear scaling, comparably weak THz fields (likely about one tenth of the ones expected for existing methods) should be sufficient to induce such strong oscillations in the spins that they change their directions.

This process would correspond to writing a bit of information into a magnetic storage device. Therefore, this new finding addresses the long-term technological ambition of a direct, high-speed manipulation of magnetic data bits by an electric field pulse. Additionally, for the first time, a nonlinear interaction mechanism between spins and short THz pulses has been exploited, marking a milestone of photonics on its own. These findings are of great importance for the understanding of light-magnetism interactions on extremely short timescales and for information technology of the future.


Original publication:
S. Baierl, M. Hohenleutner, T. Kampfrath, A.K. Zvezdin, A.V. Kimel, R. Huber and R.V. Mikhaylovskiy,
Nonlinear spin control by terahertz-driven anisotropy fields, Nature Photonics 2016
Publication: DOI: 10.1038/NPHOTON.2016.181


Contact:
Prof. Dr. Rupert Huber
Universität Regensburg
Chair for experimental and applied physics
phone: ++49 941 943-2071
e-mail: rupert.huber@ur.de

Dr. Rostislav Mikhaylovskiy
Radboud University
Institute for Molecules and Materials
phone: ++31 24365 3094
e-mail: r.mikhaylovskiy@science.ru.nl

Petra Riedl | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-regensburg.de/

More articles from Information Technology:

nachricht Magnetic Quantum Objects in a "Nano Egg-Box"
25.07.2017 | Universität Wien

nachricht 3-D scanning with water
24.07.2017 | Association for Computing Machinery

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>