Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Efficient time synchronization of sensor networks by means of time series analysis

24.01.2017

Wireless sensor networks have many applications, ranging from industrial process automation to environmental monitoring. Researchers at the Alpen-Adria-Universität Klagenfurt have recently developed a time synchronization technique and have carried out experimental performance testing. The method developed learns the behavior of the sensor clocks, making it particularly efficient in terms of energy and computational resources.

For decades, researchers have been working on improving sensor networks. A key design goal is to keep the cost of individual sensors (such as cameras and thermometers) as low as possible to enable large networks with thousands of linked sensors. This entails a disadvantage: Low-priced sensors have limited energy and computing capacities. Therefore, methods designed to make the most of limited resources are of crucial importance.

This is where time synchronization plays a fundamental role. Tight synchronization can lower the energy consumption of the nodes by reducing their radio activity time. This extends their lifetime significantly. Researchers at the Institute for Networked and Embedded Systems at the Alpen-Adria-Universität Klagenfurt have developed a new synchronization technique to address this issue. Particular emphasis was placed on ensuring that the method is not too greedy in its consumption of resources, which would cancel out the advantages of the synchronization.

"Imagine that a group of friends have arranged a meeting. Usually you agree on a time and place. It is often the case that not all of them arrive on time, so the coordinator of the meeting calls the latecomers. This involves effort," explains Jorge Schmidt, Postdoctoral researcher in Professor Bettstetter’s team. If this example is transferred to the sensor networks that he and his colleagues are investigating, this effort means a loss of energy and computing power for the individual sensors.

Working with doctoral student Wasif Masood, Schmidt and Bettstetter have now developed a technique that reduces the additional effort of synchronization between the oscillators of the individual sensors. Schmidt explains this in more detail with the help of an example: "With a group of friends, we already know who is usually late. Therefore, the coordinator of such a meeting could tell the individual friends different times in order to intercept the delay.

This is exactly what the newly developed technique does: Using time series analysis it learns the behavior of the sensor clocks and can anticipate or correct future deferrals before asynchronicities can even begin to develop. “While the idea of learning behaviors to predict future corrections is not new, we have shown that the behavior models extracted from our time series analysis work very well with commonly employed wireless sensor devices,” Jorge Schmidt adds.

The synchronization technque was tested both in the lab and outdoors under varying temperature conditions using commercially available sensor devices.

Weitere Informationen:

http://www.aau.at

Dr. Romy Müller | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht Powerful IT security for the car of the future – research alliance develops new approaches
25.05.2018 | Universität Ulm

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>