Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dartmouth team creates first hidden, real-time, screen-camera communication

19.05.2015

Opening the way for new applications of smart devices, Dartmouth researchers have created the first form of real-time communication that allows screens and cameras to talk to each other without the user knowing it.

Using off-the-shelf smart devices, the new system supports an unobtrusive, flexible and lightweight communication channel between screens (of TVs, laptops, tablets, smartphones and other electronic devices) and cameras. The system, called HiLight, will enable new context-aware applications for smart devices.


Dartmouth researchers have created the first form of real-time communication that allows screens, displaying images such as this landscape, and cameras to talk to each other without the user knowing it.

Credit: Dartmouth College

Such applications include smart glasses communicating with screens to realize augmented reality or acquire personalized information without affecting the content that users are currently viewing. The system also provides far-reaching implications for new security and graphics applications.

The findings will be presented May 20 at the ACM MobiSys'15, a top conference in mobile systems, applications and services. A PDF of the study, further information and demonstration videos are available at the HiLight project website.

In a world of ever-increasing smart devices, enabling screens and cameras to communicate has been attracting growing interest. The idea is simple: information is encoded into a visual frame shown on a screen, and any camera-equipped device can turn to the screen and immediately fetch the information.

Operating on the visible light spectrum band, screen-camera communication is free of electromagnetic interference, offering a promising alternative for acquiring short-range information. But these efforts commonly require displaying visible coded images, which interfere with the content the screen is playing and create unpleasant viewing experiences.

The Dartmouth team studied how to enable screens and cameras to communicate without the need to show any coded images like QR code, a mobile phone readable barcode. In the HiLight system, screens display content as they normally do and the content can change as users interact with the screens. At the same time, screens transmit dynamic data instantaneously to any devices equipped with cameras behind the scene, unobtrusively, in real time.

HiLight supports communication atop any screen content, such as an image, movie, video clip, game, web page or any other application window, so that camera-equipped devices can fetch the data by turning their cameras to the screen. HiLight leverages the alpha channel, a well-known concept in computer graphics, to encode bits into the pixel translucency change. HiLight overcomes the key bottleneck of existing designs by removing the need to directly modify pixel color values. It decouples communication and screen content image layers.

"Our work provides an additional way for devices to communicate with one another without sacrificing their original functionality," says senior author Xia Zhou, an assistant professor of computer science and co-director of the DartNets (Dartmouth Networking and Ubiquitous Systems) Lab. "It works on off-the-shelf smart devices. Existing screen-camera work either requires showing coded images obtrusively or cannot support arbitrary screen content that can be generated on the fly. Our work advances the state-of-the-art by pushing screen-camera communication to the maximal flexibility."

###

Assistant Professor Xia Zhou is available to comment at Xia.Zhou@dartmouth.edu.

Broadcast studios: Dartmouth has TV and radio studios available for interviews. For more information, visit: http://www.dartmouth.edu/~opa/radio-tv-studios/

Media Contact

John Cramer
john.cramer@dartmouth.edu
603-646-9130

 @dartmouth

http://www.dartmouth.edu 

John Cramer | EurekAlert!

More articles from Information Technology:

nachricht Defining the backbone of future mobile internet access
21.07.2017 | IHP - Leibniz-Institut für innovative Mikroelektronik

nachricht Researchers create new technique for manipulating polarization of terahertz radiation
20.07.2017 | Brown University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>