Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dartmouth-led team develops smartwatch with all the moves

08.05.2017

A watch that rotates, hinges, translates, orbits and rises to the occasion

In an effort to make digital smartwatches more convenient for their users, researchers at Dartmouth College and the University of Waterloo have produced a prototype watch face that moves in five different directions.


The Cito prototype rotates, hinges, translates, rises and orbits to add convenience for smartwatch users.

Credit: Jun Gong

With the ability to rotate, hinge, translate, rise and orbit, the model dramatically improves functionality and addresses limitations of today's fixed-face watches. The concept, named Cito, will be presented on May 10 at the ACM CHI Conference on Human Factors in Computing Systems in Denver, Colorado.

"Users want smartwatches that fit their lifestyles and needs," said Xing-Dong Yang, assistant professor of computer science at Dartmouth. "The Cito prototype is an exciting innovation that could give consumers even more great reasons to wear smartwatches."

Most smartwatch research primarily addresses how users can more easily input information. Cito, designed and engineered by Jun Gong, Lan Li, Daniel Vogel, and Yang, aims to remove awkward moments associated with using smartwatches by improving how the device presents data to the wearer.

Examples of watch movement - or actuation -include automatically orbiting around the wristband to allow viewing when the wrist is facing away from the user; rising to alert the wearer of a notification if the user is playing a game; hinging to allow a companion to view the watch face; and translating to reveal the watch face from underneath a shirt sleeve.

"Consumers will question the need for smartwatches if the devices are just not convenient enough. Cito proves the true potential of smartwatches and shows that they can be functional and fun," said Yang.

According to a research paper submitted at CHI 2017, the five watch face movements can be performed independently or combined. Beyond making the watches more convenient for users, the technology can provide important benefits to wearers with physical disabilities or other impairments.

The design concept is the latest innovation from the same Dartmouth lab that has studied other smartwatch innovations including Wrist-Whirl, a smartwatch that uses the wrist as a joystick to perform gestures and Doppio, a smartwatch with dual touchscreens.

"We recognize that our work investigates a radical idea, but our hope is that we also show how a methodical and principled approach can explore any such radical visions," the research team said in its paper.

In developing the prototype, researchers conducted two separate studies to confirm the usefulness, social acceptability and perceived comfort of different watch movements and usage contexts.

With continued research, the team is planning to integrate innovations like an ultra-sonic motor to reduce bulk and increase battery life to make the actuated watch technology more practical.

###

Xing-Dong Yang may be contacted at: Xing-Dong.Yang@dartmouth.edu

Watch a video featuring the Cito prototype at this link.

Hi-res photos are available upon request.

Dartmouth has TV and radio studios available for interviews. For more information, visit: http://www.dartmouth.edu/~opa/radio-tv-studios/

About Dartmouth

Founded in 1769, Dartmouth is a member of the Ivy League and offers the world's premier liberal arts education, combining its deep commitment to outstanding undergraduate and graduate teaching with distinguished research and scholarship in the arts and sciences and its three leading professional schools: the Geisel School of Medicine, Thayer School of Engineering and Tuck School of Business.

David Hirsch | EurekAlert!

Further reports about: battery life computer science gestures innovations smartwatch

More articles from Information Technology:

nachricht Researchers illuminate the path to a new era of microelectronics
23.04.2018 | Boston University College of Engineering

nachricht Researchers achieve HD video streaming at 10,000 times lower power
20.04.2018 | University of Washington

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>