Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer Science and Biology Come Together to Make Tree Identification a Snap

04.05.2011
The University of Maryland, Columbia University and the Smithsonian Institution have pooled their expertise to create the world’s first plant identification mobile app using visual search – Leafsnap.

This electronic field guide allows users to identify tree species simply by taking a photograph of the tree’s leaves. In addition to the species name, Leafsnap provides high-resolution photographs and information about the tree’s flowers, fruit, seeds and bark—giving the user a comprehensive understanding of the species.

Users of Leafsnap will not only be learning about the trees in their communities and on their hikes; they will also be contributing to science. As people use Leafsnap, the free mobile app automatically shares their images, species identifications and the tree’s location with a community of scientists. These scientists will use the information to map and monitor population growth and decline of trees nationwide. Currently, Leafsnap’s database includes the trees of the Northeast, but will soon expand to cover the trees of the entire continental United States. The app is available for the iPhone, with iPad and Android versions expected to be released later this summer.

APPlying Visual Recognition Tech to Trees

The genesis of the project was the desire by computer scientists David Jacobs of the University of Maryland and Peter Belhumeur of Columbia University to apply the face recognition technologies that they were developing to the identification of tree species. They approached John Kress, research botanist at the Smithsonian’s National Museum of Natural History, to collaborate on remaking the traditional field guide for the 21st century.

"Traditional field guides can be frustrating – you often do not find what you are looking for. We thought we could redesign them using today’s smartphones and visual recognition technology," said Belhumeur, professor of computer science at Columbia and leader of the Columbia team working on Leafsnap.

The visual recognition algorithms developed by the University of Maryland and Columbia University are key to Leafsnap. Each leaf photograph is matched against a leaf image library using numerous shape measurements computed at points along the leaf’s outline. The best matches are then ranked and returned to the user for final verification.

"Within a single species leaves can have quite diverse shapes, while leaves from different species are sometimes quite similar," said Jacobs, a professor of computer science at Maryland. "So one of the main technical challenges in using leaves to identify plant species has been to find effective representations of their shape, which capture their most important characteristics.”

The algorithms and software were developed by Columbia and Maryland, and the Smithsonian supervised the identification and collection of leaves needed to create the image library used for the visual recognition in Leafsnap. In addition, the not-for-profit organization Finding Species was hired and supervised by the Smithsonian to acquire the detailed species images seen in the Leafsnap app and on the Leafsnap.com website.

"Leafsnap was originally designed as a specialized aid for scientists and plant explorers to discover new species in poorly known habitats," said John Kress, leader of the Smithsonian team working on Leafsnap. Kress was digitizing the botanical specimens at the Smithsonian when first contacted by Jacobs and Belhumeur, so the match between a botanist and computer scientists came at a perfect time. "Now Smithsonian research is available as an app for the public to get to know the plant diversity in their own backyards, in parks, and in natural areas. This tool is especially important for the environment, because learning about nature is the first step in conserving it."

About the University of Maryland
The University of Maryland, College Park, is recognized nationally and internationally as a center of academic and research excellence. The university, which attracted more than $545 million in research funding in fiscal year 2010, is No. 5 among Kiplinger's 100 Best Values in Public Colleges, No. 18 among U.S. public universities according to U.S. News & World Report and No. 1 in awarding undergraduate degrees to African Americans according to Diverse Issues in Higher Education. The University of Maryland and the Smithsonian Institution have a long history of research and educational collaborations, which since 2009 have been facilitated by a Memorandum of Understanding between the two institutions that makes it easier for their scholars, scientists and researchers to work together to increase contributions to science, share their knowledge with the public, and educate future generations.
About Columbia Engineering
Founded in 1864, Columbia University's Fu Foundation School of Engineering and Applied Science offers programs in nine departments to both undergraduate and graduate students. With facilities specifically designed and equipped to meet the laboratory and research needs of faculty and students, Columbia Engineering is home to NSF and NIH funded centers in genomic science, molecular nanostructures, materials science, and energy, as well as one of the world’s leading programs in financial engineering. These interdisciplinary centers are leading the way in their respective fields while individual groups of engineers and scientists collaborate to solve some of society’s more vexing challenges. http://www.engineering.columbia.edu/
About Smithsonian Institution
Founded in 1846, the Smithsonian is the world’s largest museum and research complex, consisting of 19 museums and galleries, the National Zoological Park and nine research facilities. There are 6,000 Smithsonian employees and 6,500 volunteers. Approximately 30 million people from around the world visited the Smithsonian in 2009, with 188 million visits to the Smithsonian websites. The total number of objects, works of art and specimens at the Smithsonian is estimated at 137 million.

Lee Tune | Newswise Science News
Further information:
http://www.leafsnap.com

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Glycosylation: Mapping Uncharted Territory

21.09.2017 | Life Sciences

Highly precise wiring in the Cerebral Cortex

21.09.2017 | Health and Medicine

Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?

21.09.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>