Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer programming made easier

16.08.2016

Harnessing automated program synthesis allows non-programmers to create working code

Nobody said computer programming was easy. But maybe in the future, it could be.


Automata Tutor, developed with NSF support, grades answers to a programming problem.

Credit: ExCAPE

In order to simplify program development, a National Science Foundation (NSF)-supported project called Expeditions in Computer Augmented Program Engineering (ExCAPE), is developing technology that provides human operators with automated assistance.

"Computers have revolutionized our daily lives, and yet the way we program computers has changed little in the last several decades," said Rajeev Alur, a professor in the department of computer and information science at the University of Pennsylvania.

Alur heads a team of researchers -- representing nine leading computer science programs in the U.S. -- that collaborates on the ExCAPE project. NSF supports ExCAPE with a $10 million, five-year Expeditions in Computing award, which funds interdisciplinary research teams working to transform computing and technology.

Alur said the team is taking on a longstanding problem: "Software development remains a tedious and error-prone activity."

Using a model of programming called automated program synthesis, however, computers can generate pieces of code based on a user's intent, expressed using various non-code-based forms, such as examples, demonstrations or natural language commands.

"ExCAPE aims to change programming from a purely manual task to one in which a programmer and an automated program synthesis tool can collaborate to generate software that meets its specification," Alur said.

By removing the need for would-be programmers to learn esoteric programming languages, the method has the potential to significantly expand the number of people engaged in programming in a variety of disciplines, from personalized education to robotics.

Programming tools

Emerging technology known as Software-Defined Networks (SDN) allows network operators to tailor a computer network to the traffic running on it, thereby improving efficiency. Most network operators, however, are not traditional programmers and, as a result, cannot take full advantage of all the technology offers.

To address this shortcoming, the ExCAPE team developed a tool called NetEgg that lets a network operator specify the desired functionality of a switch using examples. NetEgg then automatically generates the code needed to implement that behavior while ensuring maximal throughput for network traffic.

Now patented, NetEgg has already been tested in a classroom setting and forms the basis of an NSF I-Corps project, which will explore the product's transition to commercial deployment.

Computer-aided education and beyond

Looking at the growing area of online learning, the ExCAPE team further recognized the role that program synthesis tools could play in generating automatic feedback for students -- analyzing their solutions, grading their assignments, and providing meaningful explanations of their mistakes.

That's why the team created Automata Tutor, which has been used by more than 5,000 students from more than 10 universities around the world. Alur and his colleagues presented the results from the early deployment of Automata Tutor in ACM Transactions on Computer-Human Interaction and at the International Joint Conference on Artificial Intelligence.

The group has created other tools, including AutoProf, which provides feedback on introductory programming assignments in computer languages, such as Python. Another tool, CPSgrader, automatically grades laboratory courses in cyber-physical systems and provides feedback.

More broadly, the ExCAPE team was able to develop a method that formalized and standardized the core computational problem in emerging synthesis tools. Called Syntax-Guided Synthesis, the new method has allowed the team to build a number of prototype solvers over the past two years.

"This effort has been instrumental in advancing the state-of-the-art in computational approaches, and it has facilitated novel applications of program synthesis, for instance, in automatic optimization of programs for quantum computers," Alur said.

Industry adoption

The ExCAPE team's research has affected the commercial software world, too. Its notion of syntax-guided synthesis inspired Microsoft to create automated program synthesizers for its suite of software.

"At Microsoft, we have invested significantly in the field of program synthesis, especially programming-by-examples, and with applications to end-user programming," said Sumit Gulwani, of Microsoft Research, USA.

Microsoft started out by developing domain-specific synthesizers such as FlashFill and FlashExtract, each of which uses examples to generate custom code that improves efficiency. FlashFill, which was released as a feature of Microsoft's Excel 2013, allows data entered into one column of a worksheet table to be entered in a new table column using only a few keystrokes. FlashExtract, which was included in Microsoft's PowerShell and Operations Management Suite, extracts structured data from semi-structured log files using examples.

The technology giant has also developed a generic programming-by-example synthesizer called FlashMeta.

"All of our ongoing development of by-example synthesizers at Microsoft for various domains is now being carried out over the FlashMeta framework," Gulwani said. "In fact, we have set up an entire research and engineering team for development of this framework, called PROSE. This has yielded one order of magnitude effectiveness in the overall development process."

In years to come, the process of using coding languages for programming may be seen as an evolutionary step in computing, just as other methods replaced the punch cards and assembly languages used to program early computers.

"This project builds on decades of foundational advances in formal methods and programming languages," says Nina Amla, program director in the Division of Computing and Communication Foundations at NSF. "It signals a paradigm shift in the way we teach basic programming principles, and develop reliable software systems."

Media Contact

Aaron Dubrow
adubrow@nsf.gov
703-292-4489

 @NSF

http://www.nsf.gov 

Aaron Dubrow | EurekAlert!

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>