Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combining computer vision and brain computer interface for faster mine detection

05.05.2015

Computer scientists at the University of California, San Diego, have combined sophisticated computer vision algorithms and a brain-computer interface to find mines in sonar images of the ocean floor. The study shows that the new method speeds detection up considerably, when compared to existing methods--mainly visual inspection by a mine detection expert.

"Computer vision and human vision each have their specific strengths, which combine to work well together," said Ryan Kastner, a professor of computer science at the Jacobs School of Engineering at UC San Diego.


Subjects in the study viewed images while wearing an EEG headset.

Credit: Neuromatters

"For instance, computers are very good at finding subtle, but mathematically precise patterns while people have the ability to reason about things in a more holistic manner, to see the big picture. We show here that there is great potential to combine these approaches to improve performance."

Researchers worked with the U.S. Navy's Space and Naval Warfare Systems Center Pacific (SSC Pacific) in San Diego to collect a dataset of 450 sonar images containing 150 inert, bright-orange mines placed in test fields in San Diego Bay. An image dataset was collected with an underwater vehicle equipped with sonar. In addition, researchers trained their computer vision algorithms on a data set of 975 images of mine-like objects.

In the study, researchers first showed six subjects a complete dataset, before it had been screened by computer vision algorithms. Then they ran the image dataset through mine-detection computer vision algorithms they developed, which flagged images that most likely included mines.

They then showed the results to subjects outfitted with an electroencephalogram (EEG) system, programmed to detect brain activity that showed subjects reacted to an image because it contained a salient feature--likely a mine. Subjects detected mines much faster when the images had already been processed by the algorithms. Computer scientists published their results recently in the IEEE Journal of Oceanic Engineering.

The algorithms are what's known as a series of classifiers, working in succession to improve speed and accuracy. The classifiers are designed to capture changes in pixel intensity between neighboring regions of an image. The system's goal is to detect 99.5 percent of true positives and only generate 50 percent of false positives during each pass through a classifier. As a result, true positives remain high, while false positives decrease with each pass.

Researchers took several versions of the dataset generated by the classifier and ran it by six subjects outfitted with the EEG gear, which had been first calibrated for each subject. It turns out that subjects performed best on the data set containing the most conservative results generated by the computer vision algorithms. They sifted through a total of 3,400 image chips sized at 100 by 50 pixels.

Each chip was shown to the subject for only 1/5 of a second (0.2 seconds) --just enough for the EEG-related algorithms to determine whether subject's brain signals showed that they saw anything of interest.

All subjects performed better than when shown the full set of images without the benefit of prescreening by computer vision algorithms. Some subjects also performed better than the computer vision algorithms on their own.

"Human perception can do things that we can't come close to doing with computer vision," said Chris Barngrover, who earned a computer science Ph.D. in Kastner's research group and is currently working at SSC Pacific. "But computer vision doesn't get tired or stressed. So it seemed natural for us to combine the two."

In addition to Barngrover and Kastner, co-authors on the paper include Paul DeGuzman, a program manager at Neuromatters LLC, and Alric Althoff, a Ph.D. student in computer science at the Jacobs School of Engineering at UC San Diego. Neuromatters is a pioneer in brain-computer interface technologies with their C3Vision™ system, which was adapted for use in this project. The researchers also would like to thank Advanced Brain Monitoring, a medical devices company, for the use of the company's EEG headset.

Media Contact

Ioana Patringenaru
ipatrin@eng.ucsd.edu
858-822-0899

 @UCSanDiego

http://www.ucsd.edu 

Ioana Patringenaru | EurekAlert!

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>