Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combining computer vision and brain computer interface for faster mine detection

05.05.2015

Computer scientists at the University of California, San Diego, have combined sophisticated computer vision algorithms and a brain-computer interface to find mines in sonar images of the ocean floor. The study shows that the new method speeds detection up considerably, when compared to existing methods--mainly visual inspection by a mine detection expert.

"Computer vision and human vision each have their specific strengths, which combine to work well together," said Ryan Kastner, a professor of computer science at the Jacobs School of Engineering at UC San Diego.


Subjects in the study viewed images while wearing an EEG headset.

Credit: Neuromatters

"For instance, computers are very good at finding subtle, but mathematically precise patterns while people have the ability to reason about things in a more holistic manner, to see the big picture. We show here that there is great potential to combine these approaches to improve performance."

Researchers worked with the U.S. Navy's Space and Naval Warfare Systems Center Pacific (SSC Pacific) in San Diego to collect a dataset of 450 sonar images containing 150 inert, bright-orange mines placed in test fields in San Diego Bay. An image dataset was collected with an underwater vehicle equipped with sonar. In addition, researchers trained their computer vision algorithms on a data set of 975 images of mine-like objects.

In the study, researchers first showed six subjects a complete dataset, before it had been screened by computer vision algorithms. Then they ran the image dataset through mine-detection computer vision algorithms they developed, which flagged images that most likely included mines.

They then showed the results to subjects outfitted with an electroencephalogram (EEG) system, programmed to detect brain activity that showed subjects reacted to an image because it contained a salient feature--likely a mine. Subjects detected mines much faster when the images had already been processed by the algorithms. Computer scientists published their results recently in the IEEE Journal of Oceanic Engineering.

The algorithms are what's known as a series of classifiers, working in succession to improve speed and accuracy. The classifiers are designed to capture changes in pixel intensity between neighboring regions of an image. The system's goal is to detect 99.5 percent of true positives and only generate 50 percent of false positives during each pass through a classifier. As a result, true positives remain high, while false positives decrease with each pass.

Researchers took several versions of the dataset generated by the classifier and ran it by six subjects outfitted with the EEG gear, which had been first calibrated for each subject. It turns out that subjects performed best on the data set containing the most conservative results generated by the computer vision algorithms. They sifted through a total of 3,400 image chips sized at 100 by 50 pixels.

Each chip was shown to the subject for only 1/5 of a second (0.2 seconds) --just enough for the EEG-related algorithms to determine whether subject's brain signals showed that they saw anything of interest.

All subjects performed better than when shown the full set of images without the benefit of prescreening by computer vision algorithms. Some subjects also performed better than the computer vision algorithms on their own.

"Human perception can do things that we can't come close to doing with computer vision," said Chris Barngrover, who earned a computer science Ph.D. in Kastner's research group and is currently working at SSC Pacific. "But computer vision doesn't get tired or stressed. So it seemed natural for us to combine the two."

In addition to Barngrover and Kastner, co-authors on the paper include Paul DeGuzman, a program manager at Neuromatters LLC, and Alric Althoff, a Ph.D. student in computer science at the Jacobs School of Engineering at UC San Diego. Neuromatters is a pioneer in brain-computer interface technologies with their C3Vision™ system, which was adapted for use in this project. The researchers also would like to thank Advanced Brain Monitoring, a medical devices company, for the use of the company's EEG headset.

Media Contact

Ioana Patringenaru
ipatrin@eng.ucsd.edu
858-822-0899

 @UCSanDiego

http://www.ucsd.edu 

Ioana Patringenaru | EurekAlert!

More articles from Information Technology:

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

nachricht Seeing the next dimension of computer chips
11.10.2017 | Osaka University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>