Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cars Must Be Considerate of the Driver When Talking

26.10.2015

Smart telephones and TVs are well-established technical gadgets in today’s society. The same cannot be said about smart cars with dialogue systems that can understand you and communicate as if they were a person sitting in the seat next to you. A PhD thesis in linguistics from the University of Gothenburg presents the theory that cars should consider both the driver and the traffic situation when communicating.

By putting real persons in regular cars and letting them drive around in Gothenburg while talking to each other, Jessica Villing has explored how the interaction between the driver and modern in-vehicle dialogue systems, such as navigation systems, can be improved in order to reduce the driver’s cognitive workload and therefore increase traffic safety.


Jessica Villing

Monica Havström

Most experiments of this type are conducted in simulators, where drivers are given mathematical problems to solve while driving. But since this is not how it happens in real life, Villing wanted to know how a real conversation with a passenger affects us when driving a car.

‘Humans are good at reading people they’re talking to, so looking at how passengers and drivers interact provides a perfect model for tomorrow’s dialogue systems,’ she says.

The Dico project (dico is Latin for ‘I speak’) is a collaboration between the University of Gothenburg, Volvo, Telia Sonera and Veridict. In her research, Villing has looked specifically at how Dico can be made aware of and understand the cognitive burden imposed on a person while driving a car. As well as whether the burden can be attributed to the driving task as such or something else, like the driver’s interaction with a dialogue system.

‘The theory I propose is that it should be possible to interact with a dialogue system as if it were a passenger in your car who is able to see what you see and therefore can take external factors into account when communicating. Such as keeping quiet if heavy traffic makes the driver notably stressed and having a good feel for when it is a good time to talk and give instructions.’

The current systems are unaware of the traffic situation and will keep talking regardless of how ready the driver is to listen. Navigation directions are blurted out with a certain frequency but should perhaps instead be given when the driver actually needs the information, which can vary depending on both traffic and the driver.

‘When driving a car, you shouldn’t have to focus on anything but the actual driving task,’ says Villing, who often turns off the sound of the navigation system in her own car because she feels it can be distracting.
‘I would like to do the opposite, turn off the screen and only listen to the sound, if the interaction feels natural and the information is given when I’m ready to listen.’

Villings hopes that her study will help improve the voice control in cars by making it more intuitive and safer to use.
‘So that drivers will want to use the system and feel that it helps them, instead of forcing them to push buttons and look at a screen. This type of safety-oriented system would lead to fewer accidents,’ says Villing.

More information:
Jessica Villing, +46 31-3011817, email: jessica.villing@gu.se

Weitere Informationen:

http://hum.gu.se/english/current/news/Nyhet_detalj/?languageId=100001&conten...

Calle Björned | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>