Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building trustworthy big data algorithms

30.01.2015

New algorithm can separate unstructured text into topics with high accuracy and reproducibility

Much of our reams of data sit in large databases of unstructured text. Finding insights among emails, text documents, and websites is extremely difficult unless we can search, characterize, and classify their text data in a meaningful way.

One of the leading big data algorithms for finding related topics within unstructured text (an area called topic modeling) is latent Dirichlet allocation (LDA). But when Northwestern University professor Luis Amaral set out to test LDA, he found that it was neither as accurate nor reproducible as a leading topic modeling algorithm should be.

Using his network analysis background, Amaral, professor of chemical and biological engineering in Northwestern's McCormick School of Engineering and Applied Science, developed a new topic modeling algorithm that has shown very high accuracy and reproducibility during tests. His results, published with co-author Konrad Kording, associate professor of physical medicine and rehabilitation, physiology, and applied mathematics at Northwestern, were published Jan. 29 in Physical Review X.

Topic modeling algorithms take unstructured text and find a set of topics that can be used to describe each document in the set. They are the workhorses of big data science, used as the foundation for recommendation systems, spam filtering, and digital image processing. The LDA topic modeling algorithm was developed in 2003 and has been widely used for academic research and for commercial applications, like search engines.

When Amaral explored how LDA worked, he found that the algorithm produced different results each time for the same set of data, and it often did so inaccurately. Amaral and his group tested LDA by running it on documents they created that were written in English, French, Spanish, and other languages. By doing this, they were able to prevent text overlap among documents.

"In this simple case, the algorithm should be able to perform at 100 percent accuracy and reproducibility," he said. But when LDA was used, it separated these documents into similar groups with only 90 percent accuracy and 80 percent reproducibility. "While these numbers may appear to be good, they are actually very poor, since they are for an exceedingly easy case," Amaral said.

To create a better algorithm, Amaral took a network approach. The result, called TopicMapping, begins by preprocessing data to replace words with their stem (so "star" and "stars" would be considered the same word). It then builds a network of connecting words and identifies a "community" of related words (just as one could look for communities of people in Facebook). The words within a given community define a topic.

The algorithm was able to perfectly separate the documents according to language and was able to reproduce its results. It also had high accuracy and reproducibility when separating 23,000 scientific papers and 1.2 million Wikipedia articles by topic.

These results show the need for more testing of big data algorithms and more research into making them more accurate and reproducible, Amaral said.

"Companies that make products must show that their products work," he said. "They must be certified. There is no such case for algorithms. We have a lot of uninformed consumers of big data algorithms that are using tools that haven't been tested for reproducibility and accuracy."

Megan Fellman | EurekAlert!

More articles from Information Technology:

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

nachricht Researchers catch extreme waves with higher-resolution modeling
15.02.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>