Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Broadband and Ultrathin Polarization Manipulators Developed

04.12.2014

A research team in South Korea has developed a technology that can manipulate a polarized light in broadband operation with the use of a metamaterial.

Professor Bumki Min from the Department of Mechanical Engineering at Korea Advanced Institute of Science and Technology (KAIST) has led the research and it is expected that this technology will lead to a development of broadband optical devices that can be applied to broadband communication and display.


Concept of Broadband and Ultrathin Polarization Manipulators

Copyright : Korea Advanced Institute of Science and Technology

When an object or its structure is analyzed by using a polarized light such as a laser, the results are generally affected by the polarization state of the light. Therefore, in an optics laboratory, the light is polarized with various methods.

In such cases, wave plates or photoactive materials are usually implemented. However, the performance of these devices are vastly dependent on the wavelength, and so they are not suitable to be used as a polarizer especially in broadband.

There were many attempts to make artificial materials that are very photoactive by using matematerials which have a strong resonance. Nonetheless, because the materials had an unavoidable dispersion in the resonance frequency, they were not adequate for a broadband operation.

Professor Min’s research team arranged and connected helical metamaterials that are smaller than the wavelength of a light. They theoretically and experimentally verified that a polarized light can be constantly rotated regardless of the wavelength by super thin materials that has thickness less than one-tenth of the wavelength of the light. The experiment to confirm the theory was done in the microwave band.

Broadband polarized rotational 3D metamaterials were found to be rotating the polarized microwave within the range of 0.1 GHz to 40GHz by 45 degrees regardless of its frequency. Such nondispersive property is quite unnatural because it is difficult to find a material that does not change in a wide band.

Along with this, the research team materialized the broadband nondispersive polarized rotational property by designing the metamaterial in a way that it has chirality, which determines the number of rotation proportional to the wavelength.

Professor Min said, “As the technology is able to manipulate ultrathin polarization of light in broadband, it will lead to the creation of ultra-shallow broadband optical devices.”

Sponsored by the Ministry of Science, ICT and Future Planning and the National Research Foundation of Korea, this research was led by a PhD candidate, Hyun-Sung Park under the guidance of Professor Min. The research finding was published online in the November 17th issue of Nature Communications.

Lan Yoon | ResearchSEA
Further information:
http://www.kaist.ac.kr/_prog/_board/?code=ed_news&mode=V&no=26522&upr_ntt_no=26522&site_dvs_cd=en&menu_dvs_cd=0601
http://www.researchsea.com

More articles from Information Technology:

nachricht A novel hybrid UAV that may change the way people operate drones
28.03.2017 | Science China Press

nachricht Timing a space laser with a NASA-style stopwatch
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>