Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Broadband and Ultrathin Polarization Manipulators Developed

04.12.2014

A research team in South Korea has developed a technology that can manipulate a polarized light in broadband operation with the use of a metamaterial.

Professor Bumki Min from the Department of Mechanical Engineering at Korea Advanced Institute of Science and Technology (KAIST) has led the research and it is expected that this technology will lead to a development of broadband optical devices that can be applied to broadband communication and display.


Concept of Broadband and Ultrathin Polarization Manipulators

Copyright : Korea Advanced Institute of Science and Technology

When an object or its structure is analyzed by using a polarized light such as a laser, the results are generally affected by the polarization state of the light. Therefore, in an optics laboratory, the light is polarized with various methods.

In such cases, wave plates or photoactive materials are usually implemented. However, the performance of these devices are vastly dependent on the wavelength, and so they are not suitable to be used as a polarizer especially in broadband.

There were many attempts to make artificial materials that are very photoactive by using matematerials which have a strong resonance. Nonetheless, because the materials had an unavoidable dispersion in the resonance frequency, they were not adequate for a broadband operation.

Professor Min’s research team arranged and connected helical metamaterials that are smaller than the wavelength of a light. They theoretically and experimentally verified that a polarized light can be constantly rotated regardless of the wavelength by super thin materials that has thickness less than one-tenth of the wavelength of the light. The experiment to confirm the theory was done in the microwave band.

Broadband polarized rotational 3D metamaterials were found to be rotating the polarized microwave within the range of 0.1 GHz to 40GHz by 45 degrees regardless of its frequency. Such nondispersive property is quite unnatural because it is difficult to find a material that does not change in a wide band.

Along with this, the research team materialized the broadband nondispersive polarized rotational property by designing the metamaterial in a way that it has chirality, which determines the number of rotation proportional to the wavelength.

Professor Min said, “As the technology is able to manipulate ultrathin polarization of light in broadband, it will lead to the creation of ultra-shallow broadband optical devices.”

Sponsored by the Ministry of Science, ICT and Future Planning and the National Research Foundation of Korea, this research was led by a PhD candidate, Hyun-Sung Park under the guidance of Professor Min. The research finding was published online in the November 17th issue of Nature Communications.

Lan Yoon | ResearchSEA
Further information:
http://www.kaist.ac.kr/_prog/_board/?code=ed_news&mode=V&no=26522&upr_ntt_no=26522&site_dvs_cd=en&menu_dvs_cd=0601
http://www.researchsea.com

More articles from Information Technology:

nachricht New technology enables 5-D imaging in live animals, humans
16.01.2017 | University of Southern California

nachricht Fraunhofer FIT announces CloudTeams collaborative software development platform – join it for free
10.01.2017 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>