Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Approach Eliminates Software Deadlocks Using Discrete Control Theory

Software deadlocks are the Catch-22s of the computer world. These common bugs can freeze the machine when different parts of a program end up in an endless cycle of waiting for one another as they access shared data.

University of Michigan researchers developed a new way around this problem with a controller that can anticipate and prevent situations that might cause deadlock.

Their controller is called Gadara. It’s a plug-in that operates using feedback techniques similar to those that give us cruise control in cars and thermostats in heating systems.

“This is a totally different approach to what people had done before for deadlock. Previously, engineers would try to identify potential deadlocks through testing or program analysis and then go back and rewrite the program. The bug fixes were manual, and not automatic. Gadara automates the process,” said Stéphane Lafortune, a professor in the Department of Electrical Engineering and Computer Science and a Gadara developer.

Yin Wang, a doctoral student who works with Lafortune in the same department, will present a paper on Gadara Dec. 9 at the USENIX Symposium on Operating Systems Design and Implementation in San Diego.

“Every time you find a problem today you need the original programmer to solve it. The goal of Gadara is to allow anyone with our tool to solve the problem,” Wang said.

Deadlock is becoming a more pressing concern as multicore chips grow in complexity and software performs an increasing number of tasks simultaneously. The bug shows up often in parallel programs that use shared data.

Gadara works by analyzing a program to find potential deadlocks, and then inserting control logic into the program. The control logic ensures that the program cannot deadlock.

Gadara uses a unique combination of discrete control theory and compiler technology, said Lafortune, whose primary work focuses on discrete control theory. The control theory provides the logic that allows Gadara to use feedback to prevent software deadlocks.

The compiler technology, which was developed by Scott Mahlke, a professor in the Department of Electrical Engineering and Computer Science, enables Gadara to operate on real-world applications. Compilers translate programs written in high-level programming languages in executable code.

The paper is titled “Gadara: Dynamic Deadlock Avoidance for Multithreaded Programs.” Other co-developers of Gadara are Terence Kelly, who received his doctoral degree from U-M and is currently at Hewlett-Packard Laboratories, and Manjunath Kudlur, a recent doctoral graduate from U-M who is now working at NVidia.

Current research on Gadara is funded by the National Science Foundation and by an HP Labs Open Innovation award.

For more information on Lafortune, visit:
Yin Wang:
Scott Mahlke:
USENIX Symposium on Operating Systems Design and Implementation
Michigan Engineering:
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At more than $130 million annually, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility. Michigan Engineering's premier scholarship, international scale and multidisciplinary scope combine to create The Michigan Difference.

Nicole Casal Moore | Newswise Science News
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>