Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

All eyes on the conductor

16.02.2016

A ‘conductor’ that ensures simultaneous processing tasks keep time could dramatically increase the efficiency of ‘cloud’ simulations.

In large-scale simulations that involve simultaneous computational tasks on distributed computers, the overall speed of the simulation is limited by the slowest link. By adaptively redistributing computational resources in real-time according to workload, a Singapore-based research team have shown how to overcome this ‘slowest link’ limitation[1].


Copyright : W.Rebel via Wikimediacommons [https://commons.wikimedia.org/wiki/File:BinaryData50.png]

This approach could dramatically improve the speed and efficiency of simulations conducted across many computers — also called ‘cloud’ simulations.

“The problem of workload imbalance is very common in large-scale simulations, which involve a group of parallel distributed computers or ‘components’ that need to synchronize with each other to ensure that all simulation events are executed in time stamp order,” explains research leader Zengxiang Li, from the A*STAR Institute of High Performance Computing.

Parallel computing simulations involve a large number of events that must occur in order. These events are assigned to multiple parallel computing ‘nodes’ for simultaneous computation. When an event is processed, new events may be generated and inserted into the event processing queue. It is wasteful to let expensive computational resources lie idle waiting for work, so parallel processing schemes often allow each node to process events sequentially without waiting for events from other nodes.

The problem is that if events from one node are late, the other nodes proceeding with their ‘optimistic’ execution of the next event will need to discard their extra work and rollback to where the late node left off. “The entire simulation execution is held back by the slowest components,” says Li, “while faster components risk wasting time and resources on overoptimistic execution and execution rollbacks.”

To improve the efficiency of such simulations, Li and his colleagues developed a resource-conducting scheme called Adaptive Resource Provisioning Mechanism in Virtual Execution Environments, or ArmVee. This scheme sits transparently as middleware in the simulation environment to monitor workloads and task completion speeds on each node in real-time. ArmVee then dynamically reallocates resources, such as memory and processing cycles, to speed up the slowest links.

“We use a self-adaptive auto-regressive-moving-average model — commonly used in control theory — to capture the relationship between simulation performance and resources,” says Li. “This allows ArmVee to predict the dynamically changing simulation workload and to align the execution speeds of simulation components proactively so that each advances in simulation time with comparable speed.”

Importantly, ArmVee can be used transparently in standard simulation architectures without any simulation recoding or interruption. This makes it ready for implementation in standard parallel and distributed simulations.

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing

Reference

[1] Li, Z., Cai, W., Turner, S. J., Li, X., Duong, T. N. B., Goh, R. S. M. Adaptive resource provisioning mechanism in VEEs for improving performance of HLA-based simulations. ACM Transactions on Modeling and Computer Simulation 26, 1 (2015).


Associated links
Original article from Agency for Science, Technology and Research

A*STAR Research | Research SEA
Further information:
http://www.researchsea.com

More articles from Information Technology:

nachricht Football through the eyes of a computer
14.06.2018 | Universität Konstanz

nachricht People recall information better through virtual reality, says new UMD study
14.06.2018 | University of Maryland

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>