Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


All eyes on the conductor


A ‘conductor’ that ensures simultaneous processing tasks keep time could dramatically increase the efficiency of ‘cloud’ simulations.

In large-scale simulations that involve simultaneous computational tasks on distributed computers, the overall speed of the simulation is limited by the slowest link. By adaptively redistributing computational resources in real-time according to workload, a Singapore-based research team have shown how to overcome this ‘slowest link’ limitation[1].

Copyright : W.Rebel via Wikimediacommons []

This approach could dramatically improve the speed and efficiency of simulations conducted across many computers — also called ‘cloud’ simulations.

“The problem of workload imbalance is very common in large-scale simulations, which involve a group of parallel distributed computers or ‘components’ that need to synchronize with each other to ensure that all simulation events are executed in time stamp order,” explains research leader Zengxiang Li, from the A*STAR Institute of High Performance Computing.

Parallel computing simulations involve a large number of events that must occur in order. These events are assigned to multiple parallel computing ‘nodes’ for simultaneous computation. When an event is processed, new events may be generated and inserted into the event processing queue. It is wasteful to let expensive computational resources lie idle waiting for work, so parallel processing schemes often allow each node to process events sequentially without waiting for events from other nodes.

The problem is that if events from one node are late, the other nodes proceeding with their ‘optimistic’ execution of the next event will need to discard their extra work and rollback to where the late node left off. “The entire simulation execution is held back by the slowest components,” says Li, “while faster components risk wasting time and resources on overoptimistic execution and execution rollbacks.”

To improve the efficiency of such simulations, Li and his colleagues developed a resource-conducting scheme called Adaptive Resource Provisioning Mechanism in Virtual Execution Environments, or ArmVee. This scheme sits transparently as middleware in the simulation environment to monitor workloads and task completion speeds on each node in real-time. ArmVee then dynamically reallocates resources, such as memory and processing cycles, to speed up the slowest links.

“We use a self-adaptive auto-regressive-moving-average model — commonly used in control theory — to capture the relationship between simulation performance and resources,” says Li. “This allows ArmVee to predict the dynamically changing simulation workload and to align the execution speeds of simulation components proactively so that each advances in simulation time with comparable speed.”

Importantly, ArmVee can be used transparently in standard simulation architectures without any simulation recoding or interruption. This makes it ready for implementation in standard parallel and distributed simulations.

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing


[1] Li, Z., Cai, W., Turner, S. J., Li, X., Duong, T. N. B., Goh, R. S. M. Adaptive resource provisioning mechanism in VEEs for improving performance of HLA-based simulations. ACM Transactions on Modeling and Computer Simulation 26, 1 (2015).

Associated links
Original article from Agency for Science, Technology and Research

A*STAR Research | Research SEA
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>