Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AI senses people's pose through walls

12.06.2018

X-ray vision has long seemed like a far-fetched sci-fi fantasy, but over the last decade a team led by Professor Dina Katabi from MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL) has continually gotten us closer to seeing through walls.

Their latest project, "RF-Pose," uses artificial intelligence (AI) to teach wireless devices to sense people's postures and movement, even from the other side of a wall.


This is Mingmin Zhao, pictured right.

Credit: Jason Dorfman, MIT CSAIL

The researchers use a neural network to analyze radio signals that bounce off people's bodies, and can then create a dynamic stick figure that walks, stops, sits and moves its limbs as the person performs those actions.

The team says that the system could be used to monitor diseases like Parkinson's and multiple sclerosis (MS), providing a better understanding of disease progression and allowing doctors to adjust medications accordingly. It could also help elderly people live more independently, while providing the added security of monitoring for falls, injuries and changes in activity patterns.

(All data the team collected has subjects' consent and is anonymized and encrypted to protect user privacy. For future real-world applications, the team plans to implement a "consent mechanism" in which the person who installs the device is cued to do a specific set of movements in order for it to begin to monitor the environment.)

The team is currently working with doctors to explore multiple applications in healthcare.

"We've seen that monitoring patients' walking speed and ability to do basic activities on their own gives healthcare providers a window into their lives that they didn't have before, which could be meaningful for a whole range of diseases," says Katabi, who co-wrote a new paper about the project. "A key advantage of our approach is that patients do not have to wear sensors or remember to charge their devices."

Besides health-care, the team says that RF-Pose could also be used for new classes of video games where players move around the house, or even in search-and-rescue missions to help locate survivors.

"Just like how cellphones and Wi-Fi routers have become essential parts of today's households, I believe that wireless technologies like these will help power the homes of the future," says Katabi, who co-wrote the new paper with PhD student and lead author Mingmin Zhao, MIT professor Antonio Torralba, postdoc Mohammad Abu Alsheikh, graduate student Tianhong Li and PhD students Yonglong Tian and Hang Zhao. They will present it later this month at the Conference on Computer Vision and Pattern Recognition (CVPR) in Salt Lake City, Utah.

One challenge the researchers had to address is that most neural networks are trained using data labeled by hand. A neural network trained to identify cats, for example, requires that people look at a big dataset of images and label each one as either "cat" or "not cat." Radio signals, meanwhile, can't be easily labeled by humans.

To address this, the researchers collected examples using both their wireless device and a camera. They gathered thousands of images of people doing activities like walking, talking, sitting, opening doors and waiting for elevators.

They then used these images from the camera to extract the stick figures, which they showed to the neural network along with the corresponding radio signal. This combination of examples enabled the system to learn the association between the radio signal and the stick figures of the people in the scene.

Post-training, RF-Pose was able to estimate a person's posture and movements without cameras, using only the wireless reflections that bounce off people's bodies.

Since cameras can't see through walls, the network was never explicitly trained on data from the other side of a wall - which is what made it particularly surprising to the MIT team that the network could generalize its knowledge to be able to handle through-wall movement.

"If you think of the computer vision system as the teacher, this is a truly fascinating example of the student outperforming the teacher," says Torralba.

Besides sensing movement, the authors also showed that they could use wireless signals to accurately identify somebody 83 percent of the time out of a line-up of 100 individuals. This ability could be particularly useful for the application of search-and-rescue operations, when it may be helpful to know the identity of specific people.

For this paper, the model outputs a 2-D stick figure, but the team is also working to create 3-D representations that would be able to reflect even smaller micromovements. For example, it might be able to see if an older person's hands are shaking regularly enough that they may want to get a check-up.

"By using this combination of visual data and AI to see through walls, we can enable better scene understanding and smarter environments to live safer, more productive lives," says Zhao.

Media Contact

Adam Conner-Simons
aconner@csail.mit.edu
617-324-9135

 @mit_csail

http://www.csail.mit.edu/ 

Adam Conner-Simons | EurekAlert!

Further reports about: CSAIL MIT cameras movements neural network radio signal

More articles from Information Technology:

nachricht Silicon provides means to control quantum bits for faster algorithms
11.06.2018 | Purdue University

nachricht A nanotech sensor that turns molecular fingerprints into bar codes
08.06.2018 | Ecole Polytechnique Fédérale de Lausanne

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

 
Latest News

Why Zika is not an STD - Semen inhibits Zika virus infection

12.06.2018 | Life Sciences

Second heat source optimises heat pump system

12.06.2018 | Power and Electrical Engineering

Antioxidants developed by MSU scientists slow down senescence in plants

11.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>