Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Advanced robotic bat's flight characteristics simulates the real thing

02.02.2017

Engineers create demonstration of self-contained autonomous flight by mimicking morphological properties of flexible bat wings.

Bats have long captured the imaginations of scientists and engineers with their unrivaled agility and maneuvering characteristics, achieved by functionally versatile dynamic wing conformations as well as more than forty active and passive joints on the wings. However, their wing flexibility and complex wing kinematics pose significant technological challenges for robot modelling, design, and control.


This video delineates the flight characteristics and shows B2's capabilities.

Credit: Carla Schaffer / AAAS

Researchers at the University of Illinois at Urbana-Champaign and Caltech have developed a self-contained robotic bat -- dubbed Bat Bot (B2) -- with soft, articulated wings that can mimic the key flight mechanisms of biological bats.

"Our work demonstrates one of the most advanced designs to date of a self-contained flapping-winged aerial robot with bat morphology that is able to perform autonomous flight," explained Alireza Ramezani, a postdoctoral researcher at the University of Illinois who is the first author of the cover article, "A Biomimetic Robotic Platform to Study Flight Specializations of Bats," appearing in AAAS Science Robotics on February 1. "It weighs only 93 grams, with dynamic wing articulations and wing conformations similar to those of biological bats."

Ramezani developed the prototype with his advisors Soon-Jo Chung -- now an associate professor of aerospace at Caltech -- and Seth Hutchinson at Illinois. These authors have been collaborating with Brown University professors Kenneth Breuer and Sharon Swartz, who are experts on bat flight.

"Our work introduces a design scheme to mimic the key flight mechanisms of biological bats," said Chung, who is also a research scientist at the Jet Propulsion Laboratory, which Caltech manages for NASA. "There is no well-established methodology for reverse engineering the sophisticated locomotion of bats."

Arguably, bats have the most sophisticated powered flight mechanism among animals, as evidenced by the shape-changing capability of their wings. Their flight mechanism involves more than 40 types of joints that interlock the bones and muscles to one another creating a musculoskeletal system that can change shape and is capable of movement in multiple independent directions.

"The B2 possesses a number of practical advantages over other aerial robots, such as quadrotors," said Chung. "Bats do have more 40 active and passive joints; we reduced those numbers to 9 (5 active and 4 passive) joints in the B2 robot. The compliant wings of a bat-like flapping robot flapping at lower frequencies (7-10 Hz vs. 100-300 Hz of quadrotors) are inherently safe: because their wings comprise primarily flexible materials and are able to collide with one another, or with obstacles in their environment, with little or no damage."

The B2 utilizes a morphing skeleton array and a silicone-based membrane skin that enables the robot to change its articulated structure in mid-air without losing an effective and smooth aerodynamic surface.

"Our flight control results are the first demonstration of using asymmetric wing folding of the main flexible wings to control the heading of the aerial robot," Ramezani added. "Its morphing property cannot be realized with conventional fabrics (such as nylon or mylar) that are primarily used in flapping wing research. Non-stretchable materials resist the forelimb and leg movements in B2. As a result, we covered the skeleton of our robot with a custom-made, ultra-thin (56 micron, silicone-based membrane that is designed to match the elastic properties of biological bats' membranes."

Bat-inspired aerial robots also bring significant improvements in energy efficiency over current aerial robots. This is due, at least in part, to their articulated soft wing architecture, and the fact that wing flexibility amplifies the motion of the robot's actuators.

"When a bat flaps its wings, it's like a rubber sheet," said Hutchinson, who is a professor of electrical and computer engineering at Illinois. "It fills up with air and deforms. And then, at the end of its down-stroke motion, the wing pushes the air out when it springs back into place. So you get this big amplification of power that comes just from the fact you are using flexible membranes inside the wing itself."

One potential application of B2 is to supervise construction sites. "Building construction projects are complicated, and rarely do they happen the way they are intended to happen," Hutchinson said. "Keeping track of whether the building is being put together the right way at the right time is not trivial. So the bat bots would fly around, pay attention, and compare the building information model to the actual building that's being constructed."

"For example, for tasks that require the aerial robots to be stationary, our bat-inspired aerial robots will eventually be able to perch, instead of hovering, by taking advantage of unique structures in construction sites such as steel frames, side walls, and ceiling frames," Chung said. "This is a more energy-efficient and reliable solution since stationary hovering is difficult for quadrotors in the presence of even mild wind -- which is common for construction sites. Furthermore, perching or landing conventional aircraft and quadrotors in such unusual places is nearly impossible, due to their limited control authority at slow motor speeds and aerodynamic couplings such as wall or ground effects."

Since the B2 does not use high-speed rotors that emit loud, high-frequency noise, it is significantly less intrusive than quadrotors or other aerial robots.

"In addition to construction applications, we envision robotic flapping-wing robots operating in tight quarters with humans and beyond where humans can go," Chung noted. For example, an aerial robot equipped with a radiation detector, 3D camera system, and temperature and humidity sensors could inspect something like the Fukushima nuclear reactors, where the radiation level is too high for humans, or fly into tight crawlspaces such as mines or collapsed buildings. Such highly maneuverable aerial robots, with longer flight endurance, will also make advances in the monitoring and recovery of critical infrastructures such as nuclear reactors, power grids, bridges, and borders.

"B2 certainly cannot be used for lifting heavy packages yet, but a future version of Bat Bot could validate the benefits of soft-winged flight, such as improved energy efficiency and safety, for drone-enabled package delivery," he said.

"Finally, this robot can contribute to biological studies on bat flight," Hutchinson added. "The existing methods for biology rely on vision-based motion capture systems that utilize high speed imaging sensors to record the trajectory of joints and limbs during bat flight. Although these approaches can effectively analyze the joint kinematics of bat wings in flight, they cannot help understand how specific wing movement patterns contribute to a particular flight maneuver of a bat. B2 can be used to reconstruct flight maneuvers of bats by applying wing movement patterns observed in bat flight, thereby helping us understand the role of the dominant degrees of freedom of bats."

###

The study can be found online at http://robotics.sciencemag.org/content/2/3/eaal2505.

Soon-Jo Chung | EurekAlert!

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>