Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A 'virtual wall' that improves wireless security and performance

08.11.2017

New 3-D reflectors optimize wireless coverage in the home and the office

A team of researchers led by Dartmouth College may have finally solved the problem of how to inexpensively improve wireless signal strength for indoor spaces with multiple rooms. The same technology for enhancing office and home Wi-Fi signals can also be used to strengthen wireless security.


For only $35 and 23 minutes, Wi-Fi users can increase signal strength and boost security in offices and homes.

Credit: Xia Zhou

The research, to be presented on Wednesday, November 8, at ACM's BuildSys 2017 in Delft, Netherlands, relies on 3-D printing to produce a cheap, customized reflector that directs wireless signals to where users need them most.

"Through this single solution, we address a number of challenges that plague wireless users," said Xia Zhou, an assistant professor of computer science at Dartmouth. "Not only do we strengthen wireless signals, we make those same signals more secure."

Customizing the coverage of wireless networks inside buildings is critical for users to improve signal reception in desired areas while weakening signals in others. By shaping signals, users can increase wireless efficiency through lessening the signal-deadening impact of building materials and interior layouts.

Such a system can also make it more difficult for attackers by adding to existing security measures like encryption through physically confining wireless signals to limited spaces. This also leads to reduced interference.

Achieving the goal of improved wireless performance is particularly challenging indoors because of the complex interactions of radio signals with the environment. Existing approaches to optimizing wireless signals rely on directional antennae to concentrate signals, but this equipment is either difficult to configure or beset by high cost.

Through experiments presented in the research paper, the team improves upon previous studies that placed an aluminum soft-drink can behind a Wi-Fi access point to strengthen signal in one direction. The current research generalizes this idea by presenting a systematic approach to optimizing reflector shapes for enabling a more developed set of signal distributions.

After assessing interior layouts and the target areas to strengthen or weaken signal strength, the Dartmouth research team placed a "computationally optimized" signal reflector around a wireless router. The reflector, composed only of plastic and a thin layer of metal, redirects wireless signals to the desired coverage areas.

After testing the approach in two different interiors for signal strength and speed, the researchers reported that optimized 3-D reflectors provide numerous benefits including: strong physical security, low cost, and ease of use for non-expert users.

The researchers tested the reflector with a variety of off-the-shelf Wi-Fi access points, including those using the latest Wi-Fi protocol 802.11ac.

"With a simple investment of about $35 and specifying coverage requirements, a wireless reflector can be custom-built to outperform antennae that cost thousands of dollars," said Zhou.

To create the technology, the research designed an algorithm that optimizes a reflector's 3-D shape to target wireless coverage. The team also developed an approach to simulating how radio signals spread and interact with objects in their environment.

With information on a specific interior space, locations of wireless access points and the desired target area, the system computes an optimized reflector shape in only 23 minutes. Researchers found that the reflectors can decrease strength by up to 10 dB where the signal is not wanted and increase strength by 6 dB where it is desired. The reflector is also relatively easy to place.

Because the current design is limited by its static shape, the research team will now study reflectors made of different materials so that the device can automatically adapt its shape when the interior layout changes. The team will also examine higher frequency bands such as millimeter waves and visible light.

###

The research is a joint effort by researchers from Dartmouth College, University of Washington, Columbia University, and UC Irvine.

A video demonstration of the research can be viewed at: http://www.dartgo.org/3dwifireflector

David Hirsch | EurekAlert!

More articles from Information Technology:

nachricht Japanese researchers develop ultrathin, highly elastic skin display
19.02.2018 | University of Tokyo

nachricht Why bees soared and slime flopped as inspirations for systems engineering
19.02.2018 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>