Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A 'virtual wall' that improves wireless security and performance

08.11.2017

New 3-D reflectors optimize wireless coverage in the home and the office

A team of researchers led by Dartmouth College may have finally solved the problem of how to inexpensively improve wireless signal strength for indoor spaces with multiple rooms. The same technology for enhancing office and home Wi-Fi signals can also be used to strengthen wireless security.


For only $35 and 23 minutes, Wi-Fi users can increase signal strength and boost security in offices and homes.

Credit: Xia Zhou

The research, to be presented on Wednesday, November 8, at ACM's BuildSys 2017 in Delft, Netherlands, relies on 3-D printing to produce a cheap, customized reflector that directs wireless signals to where users need them most.

"Through this single solution, we address a number of challenges that plague wireless users," said Xia Zhou, an assistant professor of computer science at Dartmouth. "Not only do we strengthen wireless signals, we make those same signals more secure."

Customizing the coverage of wireless networks inside buildings is critical for users to improve signal reception in desired areas while weakening signals in others. By shaping signals, users can increase wireless efficiency through lessening the signal-deadening impact of building materials and interior layouts.

Such a system can also make it more difficult for attackers by adding to existing security measures like encryption through physically confining wireless signals to limited spaces. This also leads to reduced interference.

Achieving the goal of improved wireless performance is particularly challenging indoors because of the complex interactions of radio signals with the environment. Existing approaches to optimizing wireless signals rely on directional antennae to concentrate signals, but this equipment is either difficult to configure or beset by high cost.

Through experiments presented in the research paper, the team improves upon previous studies that placed an aluminum soft-drink can behind a Wi-Fi access point to strengthen signal in one direction. The current research generalizes this idea by presenting a systematic approach to optimizing reflector shapes for enabling a more developed set of signal distributions.

After assessing interior layouts and the target areas to strengthen or weaken signal strength, the Dartmouth research team placed a "computationally optimized" signal reflector around a wireless router. The reflector, composed only of plastic and a thin layer of metal, redirects wireless signals to the desired coverage areas.

After testing the approach in two different interiors for signal strength and speed, the researchers reported that optimized 3-D reflectors provide numerous benefits including: strong physical security, low cost, and ease of use for non-expert users.

The researchers tested the reflector with a variety of off-the-shelf Wi-Fi access points, including those using the latest Wi-Fi protocol 802.11ac.

"With a simple investment of about $35 and specifying coverage requirements, a wireless reflector can be custom-built to outperform antennae that cost thousands of dollars," said Zhou.

To create the technology, the research designed an algorithm that optimizes a reflector's 3-D shape to target wireless coverage. The team also developed an approach to simulating how radio signals spread and interact with objects in their environment.

With information on a specific interior space, locations of wireless access points and the desired target area, the system computes an optimized reflector shape in only 23 minutes. Researchers found that the reflectors can decrease strength by up to 10 dB where the signal is not wanted and increase strength by 6 dB where it is desired. The reflector is also relatively easy to place.

Because the current design is limited by its static shape, the research team will now study reflectors made of different materials so that the device can automatically adapt its shape when the interior layout changes. The team will also examine higher frequency bands such as millimeter waves and visible light.

###

The research is a joint effort by researchers from Dartmouth College, University of Washington, Columbia University, and UC Irvine.

A video demonstration of the research can be viewed at: http://www.dartgo.org/3dwifireflector

David Hirsch | EurekAlert!

More articles from Information Technology:

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

nachricht Quantum computing on the move
06.11.2017 | Johannes Gutenberg-Universität Mainz

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

Im Focus: Support Free with “TwoCure” – Innovation in Resin-Based 3D Printing

The Fraunhofer Institute for Laser Technology ILT and Rapid Shape GmbH are working together to further develop resin-based 3D printing. The new “TwoCure” process requires no support structures and is significantly more efficient and productive than conventional 3D printing techniques for plastic components. Experts from Fraunhofer ILT will be presenting the state-funded joint development that makes use of the interaction of light and cold in forming the components at formnext 2017 from November 14 to 17 in Frankfurt am Main.

Much like stereolithography, one of the best-known processes for printing 3D plastic components works using photolithographic light exposure that causes liquid...

Im Focus: Researchers develop chip-scale optical abacus

A team of researchers led by Prof. Wolfram Pernice from the Institute of Physics at Münster University has developed a miniature abacus on a microchip which calculates using light signals. With it they are paving the way to the development of new types of computer in which, as in the human brain, the computing and storage functions are combined in one element.

Researchers at the universities of Münster, Exeter and Oxford have developed a miniature “abacus” which can be used for calculating with light signals. With it...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

 
Latest News

Need entangled atoms? Get 'Em FAST! with NIST's new patent-pending method

08.11.2017 | Physics and Astronomy

New approach uses light instead of robots to assemble electronic components

08.11.2017 | Information Technology

Tracking down the origins of gold

08.11.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>