Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Data Base that Propels Performance

25.01.2016

Siemens is combining all of its remote analytics and maintenance services on a single technological base. Customers will benefit from heightened performance and greater availability of their facilities, as well as from lower energy consumption, reduced costs, less risk, and improved safety and security.

From trains to turbines, a vast range of machines generate and transmit data every second. With a view to providing benefits for its customers, Siemens wants to extract even more valuable information from this data.

That’s why the company is consolidating these activities under the name Siemens Digital Services and has created an associated technology base called Sinalytics. It brings together all of the technological components needed for data integration and analysis, connectivity, and cyber security.

Sinalytics can securely connect to installed Siemens systems worldwide so that they can be remotely monitored and serviced. Cutting-edge analytical methods help Siemens experts predict and prevent faults, recognize opportunities for improving performance, and save energy and costs.

Finally, the analysis of huge and complex amounts of data enables the company to increase the availability and performance of its customers’ facilities and optimize maintenance intervals.

Sinalytics represents a big step on Siemens’ path to becoming a digital company. This combined with Siemens’ understanding of its customers’ needs and processes, enables even greater opportunities to optimize benefits for customers. In fiscal 2015, Siemens earned around €16 billion from its service business, with digital services accounting for €600 million of this amount.

How Predictive Maintenance Keeps Trains on Track

For the past decade, Siemens has been a pioneer in remote maintenance – with altogether more than 300,000 connected devices in almost all business areas, from traffic light controls to locomotives, CT scanners and gas and wind turbines. The major example is the Siemens’ Common Remote Service Platform (CRSP), which has now been integrated into the Sinalytics platform. One CRSP-example is is the remote maintenance of gas turbines.

This service tracks a turbine’s performance so precisely that it enables repairs to be initiated before a fault actually arises. Another service is Tubeguard, which was introduced in 2008. Tubeguard can reliably predict the end of an X-ray tube’s service life so that breakdowns can be prevented, thus making computer tomographs more economical.

Today, Sinalytics processes 17 terabytes of data per month. By way of comparison, in 2012 the platform processed three terabytes of data from 120,000 devices. Given this huge increase in data – and thus in actionable knowledge – with the new Sinalytics platform, predictive maintenanceis becoming even more important. Sinalytics’ refined analysis tools help customers reduce unscheduled downtimes and increase operating efficiency.

One of these customers is the Spanish railway company Renfe, which operates 26 Siemens Velaro E high-speed trains between Madrid and Barcelona as well as between Madrid and Malaga. Some 160 service employees work around the clock to maximize the availability of Renfe’s trains, a task for which they also use data analyses. As result of predictive maintenance, the punctuality rate of the Siemens trains has risen to as high as 99.9 percent. This high rate of availability enables Renfe to offer its customers a unique “money-back guarantee” that reimburses passengers for the entire ticket price if a train is late by 15 or more minutes.

Customers in Control

But digital services aren’t everything. Without the kind of deep understanding of products and processes that characterizes Siemens’ approach, a purely IT-based focus on service would not be able to generate the added value provided by Sinalytics. Whereas competitors focus on collecting as much information as possible at a central location, Siemens lets its customers decide where and how they want their data to be utilized.

Distributed analytics, which involves the pre-processing and analysis of data directly in local devices, will grow in importance. In the future, devices will make decisions on their own. “Customers want this, because their data often contains trade secrets,” says Matthias Goldstein, head of Siemens Corporate Technology’s Digitization Office.

Distributed analytics is also interesting for developments such as “Industrie 4.0”, where cyber physical systems produce individualized goods and independently reorganize themselves if a machine breaks down. Here, Sinalytics is closely networked with the Web of Systems, which is Siemens’ concept for the Internet of Things.

A few years from now, billions of devices will be connected to the Internet. Through the Web of Systems, Siemens is creating the basis for ensuring data security and making all of these devices reliable, secure, and durable.

A System that Spurs Innovation

One of Sinalytics’ key achievements is that it sets the stage for technological innovation. For example, instead of ordering a spare part from a warehouse, Sinalytics could, if a fault were imminent, send an order to a 3D printer located in the vicinity of a service technician or even directly to a customer location. But in order to open the door to this kind of flexibility, Siemens will have to be infused with digital expertise. Only then will it be able to exploit such potential in cooperation with its customers and extract maximum value added. “Sinalytics will help us overcome the challenges of the digital transformation for the benefit of our customers and ourselves,” concludes Goldstein.
Bernd Müller

Redaktion
Sebastian Webel
Dr. Norbert Aschenbrenner
Dr. Johannes von Karczewski


Kontakt für Journalisten
Florian Martini
Tel.: +49 (89) 636-33446

Bernd Müller | Siemens Pictures of the Future

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>