Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Data Base that Propels Performance

25.01.2016

Siemens is combining all of its remote analytics and maintenance services on a single technological base. Customers will benefit from heightened performance and greater availability of their facilities, as well as from lower energy consumption, reduced costs, less risk, and improved safety and security.

From trains to turbines, a vast range of machines generate and transmit data every second. With a view to providing benefits for its customers, Siemens wants to extract even more valuable information from this data.

That’s why the company is consolidating these activities under the name Siemens Digital Services and has created an associated technology base called Sinalytics. It brings together all of the technological components needed for data integration and analysis, connectivity, and cyber security.

Sinalytics can securely connect to installed Siemens systems worldwide so that they can be remotely monitored and serviced. Cutting-edge analytical methods help Siemens experts predict and prevent faults, recognize opportunities for improving performance, and save energy and costs.

Finally, the analysis of huge and complex amounts of data enables the company to increase the availability and performance of its customers’ facilities and optimize maintenance intervals.

Sinalytics represents a big step on Siemens’ path to becoming a digital company. This combined with Siemens’ understanding of its customers’ needs and processes, enables even greater opportunities to optimize benefits for customers. In fiscal 2015, Siemens earned around €16 billion from its service business, with digital services accounting for €600 million of this amount.

How Predictive Maintenance Keeps Trains on Track

For the past decade, Siemens has been a pioneer in remote maintenance – with altogether more than 300,000 connected devices in almost all business areas, from traffic light controls to locomotives, CT scanners and gas and wind turbines. The major example is the Siemens’ Common Remote Service Platform (CRSP), which has now been integrated into the Sinalytics platform. One CRSP-example is is the remote maintenance of gas turbines.

This service tracks a turbine’s performance so precisely that it enables repairs to be initiated before a fault actually arises. Another service is Tubeguard, which was introduced in 2008. Tubeguard can reliably predict the end of an X-ray tube’s service life so that breakdowns can be prevented, thus making computer tomographs more economical.

Today, Sinalytics processes 17 terabytes of data per month. By way of comparison, in 2012 the platform processed three terabytes of data from 120,000 devices. Given this huge increase in data – and thus in actionable knowledge – with the new Sinalytics platform, predictive maintenanceis becoming even more important. Sinalytics’ refined analysis tools help customers reduce unscheduled downtimes and increase operating efficiency.

One of these customers is the Spanish railway company Renfe, which operates 26 Siemens Velaro E high-speed trains between Madrid and Barcelona as well as between Madrid and Malaga. Some 160 service employees work around the clock to maximize the availability of Renfe’s trains, a task for which they also use data analyses. As result of predictive maintenance, the punctuality rate of the Siemens trains has risen to as high as 99.9 percent. This high rate of availability enables Renfe to offer its customers a unique “money-back guarantee” that reimburses passengers for the entire ticket price if a train is late by 15 or more minutes.

Customers in Control

But digital services aren’t everything. Without the kind of deep understanding of products and processes that characterizes Siemens’ approach, a purely IT-based focus on service would not be able to generate the added value provided by Sinalytics. Whereas competitors focus on collecting as much information as possible at a central location, Siemens lets its customers decide where and how they want their data to be utilized.

Distributed analytics, which involves the pre-processing and analysis of data directly in local devices, will grow in importance. In the future, devices will make decisions on their own. “Customers want this, because their data often contains trade secrets,” says Matthias Goldstein, head of Siemens Corporate Technology’s Digitization Office.

Distributed analytics is also interesting for developments such as “Industrie 4.0”, where cyber physical systems produce individualized goods and independently reorganize themselves if a machine breaks down. Here, Sinalytics is closely networked with the Web of Systems, which is Siemens’ concept for the Internet of Things.

A few years from now, billions of devices will be connected to the Internet. Through the Web of Systems, Siemens is creating the basis for ensuring data security and making all of these devices reliable, secure, and durable.

A System that Spurs Innovation

One of Sinalytics’ key achievements is that it sets the stage for technological innovation. For example, instead of ordering a spare part from a warehouse, Sinalytics could, if a fault were imminent, send an order to a 3D printer located in the vicinity of a service technician or even directly to a customer location. But in order to open the door to this kind of flexibility, Siemens will have to be infused with digital expertise. Only then will it be able to exploit such potential in cooperation with its customers and extract maximum value added. “Sinalytics will help us overcome the challenges of the digital transformation for the benefit of our customers and ourselves,” concludes Goldstein.
Bernd Müller

Redaktion
Sebastian Webel
Dr. Norbert Aschenbrenner
Dr. Johannes von Karczewski


Kontakt für Journalisten
Florian Martini
Tel.: +49 (89) 636-33446

Bernd Müller | Siemens Pictures of the Future

More articles from Information Technology:

nachricht Snake-inspired robot uses kirigami to move
22.02.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Camera technology in vehicles: Low-latency image data compression
22.02.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>