Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

4D Movies Capture every Jiggle, Creating Realistic Digital Avatars (w /video)

11.08.2015

Researchers at the Max Planck Institute for Intelligent Systems unveil the world’s first high-resolution 4D body scanner and software to model detailed soft-tissue motion.

“Everybody jiggles” according to Dr. Michael Black, Director at the Max Planck Institute for Intelligent Systems (MPI-IS) in Tübingen, Germany. “We may not like it, but how we jiggle says a lot about who we are. Our soft tissue (otherwise known as fat and muscle) deforms, wobbles, waves, and bounces as we move.


Dyna allows soft-tissue retargeting. Left: the dynamics are transferred from a heavy male to an „ogre“, Right: the dynamics of a heavy female to a thin „office worker“.

Perceiving Systems Department

These motions may provide clues about our risk for cardiovascular disease and diabetes. They also make us look real. Digital characters either lack natural soft-tissue motion or require time-consuming animation to make them believable”. Now researchers at MPI-IS have captured people and how people jiggle in exacting detail and have created realistic 3D avatars that bring natural body motions to digital characters.

To put jiggling under a microscope, the researchers needed a new type of scanner to capture 3D body shape as it is deforming. Most body scanners capture the static shape of the body. The new MPI-IS scanner is actually made of 66 cameras and special projectors that shine a speckled pattern on a subject’s body.

The system uses stereo, something like what human’s do to see depth but, in this case, with 66 eyes. Dr. Javier Romero, a research scientist at MPI-IS, says "the system captures high-speed '4D movies' of 3D body shape, where the 4th dimension is time".

The system captures 3D body shapes with about 150,000 3D points 60 times a second. According to Romero, this level of detail "shows ripples and waves propagating through soft tissue,” i.e. jiggle. The system is the world’s first full-body 4D scanner and was custom built by 3dMD Systems (http://www.3dmd.com), a leader in medical grade scanning systems.

"To analyze the data", Black says "it must first be put into correspondence.” The researchers take an average 3D body shape and deform it to match every frame in the 4D movie. The process, called 4Cap, tracks points on the body across time enabling their motion to be analyzed. Romero says that "this is similar to motion capture, or 'mocap' ”, commonly used in the animation industry except that mocap systems typically track around 50 points on the body using special markers while 4Cap tracks 15,000 points without any markers.

With this data, Dr. Gerard Pons-Moll, a post doctoral researcher at MPI-IS has created Dyna, a method to make highly-realistic 3D avatars that move and jiggle like real people. Soft-tissue motions are critical to creating believable characters that look alive. “If it doesn’t jiggle it’s not human,” says Pons-Moll. Applying machine learning algorithms, the team measured the statistics of soft tissue motion and how these motions vary from person to person. Depending on the body-mass index (BMI) of the avatar, their soft tissue will move differently.

“Because Dyna is a mathematic model, we can apply it to fantasy characters as well,” says Pons-Moll. Dyna can take the jiggle of a heavy-set person and transfer it to a thin person or an ogre, troll, or other cartoon character. Previous animation methods required complex physics simulations. Dyna simplifies this and is efficient to use in animating characters for movies or games. Animators can even edit the motions to exaggerate effects or change how a body deforms.

Dyna is not just for games but might one day be used in your doctor’s office. “How your fat jiggles provides information about where it is located and whether it is dangerous,” says Black. By tracking, modeling, and analyzing body fat in motion, Black sees the opportunity to non-invasively get an idea of what is under our skin. One day determining your risk for heart disease or diabetes might involve jumping around in front of a camera.

The work is being presented this week at ACM SIGGRAPH in Los Angeles. SIGGRAPH is the leading conference for research in computer graphics.

Weitere Informationen:

http://ps.is.tuebingen.mpg.de
http://dyna.is.tue.mpg.de
https://www.youtube.com/watch?v=mWthea2K8-Q
https://www.youtube.com/watch?v=AjZ24UbwvLU (supplemental material)

Claudia Däfler | Max-Planck-Institut für Intelligente Systeme

More articles from Information Technology:

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

nachricht Researchers catch extreme waves with higher-resolution modeling
15.02.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>