Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


4D Movies Capture every Jiggle, Creating Realistic Digital Avatars (w /video)


Researchers at the Max Planck Institute for Intelligent Systems unveil the world’s first high-resolution 4D body scanner and software to model detailed soft-tissue motion.

“Everybody jiggles” according to Dr. Michael Black, Director at the Max Planck Institute for Intelligent Systems (MPI-IS) in Tübingen, Germany. “We may not like it, but how we jiggle says a lot about who we are. Our soft tissue (otherwise known as fat and muscle) deforms, wobbles, waves, and bounces as we move.

Dyna allows soft-tissue retargeting. Left: the dynamics are transferred from a heavy male to an „ogre“, Right: the dynamics of a heavy female to a thin „office worker“.

Perceiving Systems Department

These motions may provide clues about our risk for cardiovascular disease and diabetes. They also make us look real. Digital characters either lack natural soft-tissue motion or require time-consuming animation to make them believable”. Now researchers at MPI-IS have captured people and how people jiggle in exacting detail and have created realistic 3D avatars that bring natural body motions to digital characters.

To put jiggling under a microscope, the researchers needed a new type of scanner to capture 3D body shape as it is deforming. Most body scanners capture the static shape of the body. The new MPI-IS scanner is actually made of 66 cameras and special projectors that shine a speckled pattern on a subject’s body.

The system uses stereo, something like what human’s do to see depth but, in this case, with 66 eyes. Dr. Javier Romero, a research scientist at MPI-IS, says "the system captures high-speed '4D movies' of 3D body shape, where the 4th dimension is time".

The system captures 3D body shapes with about 150,000 3D points 60 times a second. According to Romero, this level of detail "shows ripples and waves propagating through soft tissue,” i.e. jiggle. The system is the world’s first full-body 4D scanner and was custom built by 3dMD Systems (, a leader in medical grade scanning systems.

"To analyze the data", Black says "it must first be put into correspondence.” The researchers take an average 3D body shape and deform it to match every frame in the 4D movie. The process, called 4Cap, tracks points on the body across time enabling their motion to be analyzed. Romero says that "this is similar to motion capture, or 'mocap' ”, commonly used in the animation industry except that mocap systems typically track around 50 points on the body using special markers while 4Cap tracks 15,000 points without any markers.

With this data, Dr. Gerard Pons-Moll, a post doctoral researcher at MPI-IS has created Dyna, a method to make highly-realistic 3D avatars that move and jiggle like real people. Soft-tissue motions are critical to creating believable characters that look alive. “If it doesn’t jiggle it’s not human,” says Pons-Moll. Applying machine learning algorithms, the team measured the statistics of soft tissue motion and how these motions vary from person to person. Depending on the body-mass index (BMI) of the avatar, their soft tissue will move differently.

“Because Dyna is a mathematic model, we can apply it to fantasy characters as well,” says Pons-Moll. Dyna can take the jiggle of a heavy-set person and transfer it to a thin person or an ogre, troll, or other cartoon character. Previous animation methods required complex physics simulations. Dyna simplifies this and is efficient to use in animating characters for movies or games. Animators can even edit the motions to exaggerate effects or change how a body deforms.

Dyna is not just for games but might one day be used in your doctor’s office. “How your fat jiggles provides information about where it is located and whether it is dangerous,” says Black. By tracking, modeling, and analyzing body fat in motion, Black sees the opportunity to non-invasively get an idea of what is under our skin. One day determining your risk for heart disease or diabetes might involve jumping around in front of a camera.

The work is being presented this week at ACM SIGGRAPH in Los Angeles. SIGGRAPH is the leading conference for research in computer graphics.

Weitere Informationen: (supplemental material)

Claudia Däfler | Max-Planck-Institut für Intelligente Systeme

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>