Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3-D printers open new design space for wireless devices

05.05.2017

Conductive filaments and 3-D printers allow quick construction of electromagnetic metamaterials

Researchers at Duke University have 3-D printed potent electromagnetic metamaterials, using an electrically conductive material compatible with a standard 3-D printer.


An illustration of how 3-D-printed metamaterial unit cells could be combined like Lego blocks to create structures that bend or focus microwave radiation more powerfully than any material found in nature.

Credit: Abel Yangbo Xie, Duke University

The demonstration could revolutionize the rapid design and prototyping of radio frequency applications such as Bluetooth, Wi-Fi, wireless sensing and communications devices.

Metamaterials are synthetic materials composed of many individual, engineered devices called cells that together produce properties not found in nature. As an electromagnetic wave moves through the metamaterial, each engineered cell manipulates the wave in a specific way to dictate how the wave behaves as a whole.

Metamaterials can be tailored to have unnatural properties such as bending light backwards, focusing electromagnetic waves onto multiple areas and perfectly absorbing specific wavelengths of light. But previous efforts have been constrained to 2-D circuit boards, limiting their effectiveness and abilities and making their fabrication difficult.

In a new paper appearing online in the journal Applied Physics Letters, Duke materials scientists and chemists have shown a way to bring electromagnetic metamaterials into the third dimension using common 3-D printers.

"There are a lot of complicated 3-D metamaterial structures that people have imagined, designed and made in small numbers to prove they could work," said Steve Cummer, professor of electrical and computer engineering at Duke. "The challenge in transitioning to these more complicated designs has been the manufacturing process. With the ability to do this on a common 3-D printer, anyone can build and test a potential prototype in a matter of hours with relatively little cost."

The key to making 3-D printed electromagnetic metamaterials a reality was finding the right conductive material to run through a commercial 3-D printer. Such printers usually use plastics, which are typically terrible at conducting electricity.

While there are a few commercially available solutions that mix metals in with the plastics, none are conductive enough to create viable electromagnetic metamaterials. While metal 3-D printers do exist, they cost as much as $1 million and take up an entire room.

That's where Benjamin Wiley, Duke associate professor of chemistry, came in.

"Our group is really good at making conductive materials," said Wiley, who has been exploring these materials for nearly a decade. "We saw this gap and realized there was a huge unexplored space to be filled and thought we had the experience and knowledge to give it a shot."

Wiley and Shengrong Ye, a postdoctoral researcher in his group, created a 3-D printable material that is 100 times more conductive than anything currently on the market. The material is currently being sold under the brand name Electrifi by Multi3D LLC, a startup founded by Wiley and Ye. While still not nearly as conductive as regular copper, Cummer thought that it might just be conductive enough to create a 3-D printed electromagnetic metamaterial.

In the paper, Cummer and doctoral student Abel Yangbo Xie show that not only is Electrifi conductive enough, it interacts with radio waves almost as strongly as traditional metamaterials made with pure copper. That small difference is easily made up for by the printed metamaterials' 3-D geometry -- the results show that the 3-D printed metamaterial cubes interact with electromagnetic waves 14 times better than their 2-D counterparts.

By printing numerous cubes, each tailored to specifically interact with an electromagnetic wave in a certain way, and combining them like Lego building blocks, researchers can begin to build new devices. For the devices to work, however, the electromagnetic waves must be roughly the same size as the individual blocks. While this rules out the visible spectrum, infrared and X-rays, it leaves open a wide design space in radio waves and microwaves.

"We're now starting to get more aggressive with our metamaterial designs to see how much complexity we can build and how much that might improve performance," said Cummer. "Many previous designs were complicated to make in large samples. You could do it for a scientific paper once just to show it worked, but you'd never want to do it again. This makes it a lot easier. Everything is on the table now."

"We think this could change how the radio frequency industry prototypes new devices in the same way that 3-D printers changed plastic-based designs," said Wiley. "When you can hand off your designs to other people or exactly copy what somebody else has done in a matter of hours, that really speeds up the design process."

###

This work was supported by a Multidisciplinary University Research Initiative grant from the Office of Naval Research (N00014-13-1-0631).

Microwave Metamaterials Made by Fused Deposition 3D Printing of a Highly Conductive Copper-based Filament. Yangbo Xie, Shengrong Ye, Christopher Reyes, Pariya Sithikong, Bogdan Popa, Benjamin J. Wiley, and Steven A. Cummer. Applied Physics Letters, 2017. DOI: 10.1063/1.4982718

Media Contact

Ken Kingery
ken.kingery@duke.edu
614-570-3942

 @DukeU

http://www.duke.edu 

Ken Kingery | EurekAlert!

More articles from Information Technology:

nachricht Underwater acoustic localization of marine mammals and vehicles
23.11.2017 | IMDEA Networks Institute

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>