Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015

Alzheimer’s disease affects approximately 35 million people worldwide, and currently one million people are estimated to be affected in Germany. With the increasing life expectancy, scientists are concerned that the incidence of dementia and Alzheimer’s disease will double in the next 25 years if it is not possible to treat the disease or prevent its onset. “We are gaining clearer insights into how Alzheimer’s develops,” said Professor Thomas Willnow of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) on the occasion of World Alzheimer’s Day. He hopes that these insights will lead to the development of new treatments for Alzheimer’s disease.

Alzheimer’s researchers at the MDC pursue various approaches to better diagnose and treat the disease. Professor Willnow is searching for the genetic causes of the disease. The protein scientist Professor Erich Wanker is seeking new ways to diagnose the disease and identify new active substances to prevent its onset. Dipl.-Ing. Marion Bimmler (MDC; biotech company E.R.D.E-AAK-Diagnostik GmbH, Campus Berlin-Buch) is studying specific autoantibodies that damage the blood vessels in the brain and thus contribute to dementia and Alzheimer’s disease.

Professor Willnow’s research is based on genome-wide association studies (GWAS). In these studies, researchers compare the genomes of approximately 50,000 healthy people with those of around 10,000 people suffering from the sporadic, late-onset form of Alzheimer’s. The late-onset form accounts for about 95 percent of Alzheimer's patients and is a disease of old age. Its causes are mostly unknown, which is why scientists are searching for genetic risk factors and environmental factors for this form of Alzheimer’s.

By comparing the genomes of healthy people and Alzheimer patients, geneticists can identify which genes are altered in people affected by the disease. Generally either too much or too little of the respective gene product (protein) is generated or the protein does not function correctly. “We study the function of such genes in mice. Currently we are investigating four to five different genes,” said Professor Willnow. “Twin studies also indicate that this sporadic form of Alzheimer’s must have a strong genetic component,” the cell biologist added.

In the familial form of Alzheimer’s, which accounts for only about five percent of the incidence of Alzheimer’s disease and is characterized by onset at a young age, researchers have identified different mutations in three genes. A mutation in one of the three genes is sufficient to induce this early form of Alzheimer’s. This familial form of Alzheimer's is very aggressive as opposed to the late-onset form.

Nerve cells themselves produce protective factor
A few years ago, during a genome-wide association study, Professor Willnow’s research group discovered that healthy nerve cells generate a protective factor, the transport protein SORLA (abbreviation: sorting protein-related receptor), which reduces the production of the main culprit for Alzheimer’s, the A-beta peptide. A-beta is a small protein fragment that arises from a larger precursor protein, APP. Two different molecular scissors (secretases) cut APP into pieces of A-beta. This process takes place in the brain of healthy people and ensures that nerve cells communicate with each other.

However, if too much A-beta is formed which the body cannot dispose of, the nerve cells die off and neuronal communication is disturbed. Cognitive defects are the consequence. Excess A-beta also leads to the dangerous build-up of plaque deposits in the brain, which additionally damage the nerve cells. “Since the amount of A-beta in the brain constantly increases with the age of the individual, the risk of developing Alzheimer’s in old age rises dramatically,” Professor Willnow said. He demonstrated that a loss of the protective factor SORLA in mice leads to increased A-beta formation. He detected the same phenomenon in the brains of people affected by Alzheimer’s. Some patients make less SORLA, so that increasingly the toxic A-beta is formed and deposited in the brain. In studies on mice he showed that increased production of the protective factor SORLA significantly reduces the amount of A-beta in the brain.

Professor Wanker: Development of new tools for diagnosis and treatment
Professor Wanker’s research focuses on the proteins that have been identified to be causally related to Alzheimer’s and other neurodegenerative diseases such as Huntington’s disease and Parkinson’s disease. The biochemist is primarily interested in why the healthy peptide A-beta is transformed into a pathogenic peptide. A few years ago researchers showed that the pathogenic A-beta in the brain self-propagates and spreads in the brain. In this context, researchers speak of “seeds” – soluble toxic structures that A-beta produces in the brain. Professor Wanker studies these structures, some of which are from the dissected brains of deceased Alzheimer’s patients, in cell cultures in his laboratory. “We have developed a new method by which we can quantify the dissemination of these abnormal structures. “Our aim is to discover drugs that will prevent them from spreading in order to inhibit the manifestation of the disease,” Professor Wanker said.

Dipl.-Ing. Bimmler: Autoantibodies in the brain damage blood vessels
Blood vessel damage in the brain is another component of the complex Alzheimer’s disease and other dementias. A few years ago, Dipl.-Ing. Marion Bimmler (MDC), Dr. Peter Karczewski and Petra Hempel (E.R.D.E.-AAK-Diagnostik GmbH) provided evidence in studies on rodents that a group of antibodies of the immune system can damage blood vessels in the brain. If these antibodies are dysregulated, they attack the body, which is why they are called autoantibodies.

The so-called agonistic acting autoantibodies (agAAB) bind to specific surface proteins (receptors; alpha1 adrenergic receptors) of blood vessel cells and there trigger a constant stimulation of the receptor. Thereby, the concentration of calcium ions is increased in the cell. The agAAB activate the growth of smooth vascular muscle cells and induce a thickening of the blood vessel walls, thus causing a disruption of the blood flow in the brain. In studies on rodents, the biotechnologists could show this reduced blood flow by means of magnetic resonance imaging (MRI).

Using immunofluorescence microscopy, they were also able to demonstrate a significant decrease in vascular density in sections of the cerebral cortex. Moreover, the Virchow-Robins spaces of the animals – they surround the blood vessels in the brain – were greatly dilated. Excessive widening (dilation) is considered the sign of the presence of damage to very small blood vessels (microangiopathies). The researchers thus provided proof that antibodies to the alpha -1- adrenergic receptor cause damage to the larger and smaller blood vessels in the brain of rodents.

In previous studies, Marion Bimmler and her research team examined the blood of patients with Alzheimer‘s / vascular dementia and found that half of them had such autoantibodies. In cooperation with the Charité – Universitätsmedizin Berlin and the University Hospital of Jena, these autoantibodies were removed from the blood of a small number of patients with Alzheimer’s / vascular dementia. “The patients who underwent hemodialysis benefited from the treatment. Both their memory skills and their ability to cope with everyday life improved or remained constant and did not deteriorate during the observation period of 12 - 24 months. We have thus demonstrated a therapeutic option (proof of concept)” said Bimmler. “In contrast to the patients who received the treatment, the condition of the untreated patients who continued to have autoantibodies in their blood deteriorated during the same period.” A further study is currently being planned.

Main risk factors for Alzheimer’s
Metabolic diseases such as type 2 diabetes, elevated cholesterol levels and obesity are among the main risk factors for Alzheimer’s. The greatest genetic risk factor, according to Professor Willnow, is apolipoprotein E, a regulator of cholesterol. People with a specific variant of this gene have a four times higher risk of developing Alzheimer’s than carriers of other genes. Just how a dysregulation in the glucose and lipid metabolism can cause damage in the brain, however, is still unclear. For some time Professor Willnow has been exploring the molecular mechanisms underlying this interaction. The main focus of research is on a new class of signal receptors.

Marion Bimmler and her team were also able to detect agonistic autoantibodies in people with type 2 diabetes. “Perhaps,” the researcher said, “these are one of the reasons why diabetics develop dementia and Alzheimer’s more frequently than non-diabetics.”

Possibility of delaying the onset of the disease
Against this background, the researchers are convinced that it is possible to delay the onset of Alzheimer's. This includes paying attention to one’s health, exercising, and eating a good diet.

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)
Robert-Rössle-Straße 10
13125 Berlin
Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
http://www.mdc-berlin.de/en

Barbara Bachtler | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

More articles from Event News:

nachricht Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru
28.04.2017 | InfectoGnostics - Forschungscampus Jena e.V.

nachricht Expert meeting “Health Business Connect” will connect international medical technology companies
20.04.2017 | IVAM Fachverband für Mikrotechnik

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>