Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum technologies to revolutionise 21st century - Nobel Laureates discuss at Lindau

30.06.2016

Is quantum technology the future of the 21st century? On the occasion of the 66th Lindau Nobel Laureate Meeting, this is the key question to be explored today in a panel discussion with the Nobel Laureates Serge Haroche, Gerardus ’t Hooft, William Phillips and David Wineland. In the following interview, Council Member Professor Rainer Blatt, internationally renowned quantum physicist, recipient of numerous honours, and Scientific Co-Chairman of the 66th Lindau Meeting, talks about what we can expect from the “second quantum revolution”.

Blatt has no doubt: quantum technologies are driving forward a technological revolution, the future impact of which is still unclear. Nothing stands in the way of these technologies becoming the engine of innovations in science, economics and society in the 21st century.

Early laboratory prototypes have shown just how vast the potential of quantum technologies is. Specific applications are expected in the fields of metrology, computing and simulations. However, substantial funding is required to advance from the development stage.

Professor Blatt, the first quantum revolution laid the physical foundations for trailblazing developments such as computer chips, lasers, magnetic resonance imaging and modern communications technology. In the Quantum Manifest published in mid-May, researchers now talk about the advent of a second quantum revolution. What exactly does this mean?

This second quantum revolution, as it is sometimes called, takes advantage of the phenomenon of entanglement. It’s a natural phenomenon that basic researchers recognized as early as the 1930s. Until now, all the technologies you mentioned derive their utility from the wave property upon which quantum physics is based. In the quantum world, its associated phenomena are often discussed in the context of wave-particle duality.

Though they are not recognized as such, quantum technologies are therefore already available, and without them, many of our instruments would not be possible. By contrast, the nature of entanglement, which has been known for 85 years, has only been experimentally investigated in the past four decades based on findings by John Bell in the 1960s.

Today, entanglement forms the basis for many new potential applications such as quantum communications, quantum metrology and quantum computing. The second quantum revolution is generally understood to be the realization of these new possibilities.

How long will it take for the second quantum revolution to produce marketable applications and products?

Marketable applications and products are already available in the field of quantum communications, meaning that such devices can already be purchased and commercially used. The use of entanglement for matter – not just for photons – will transform metrology by providing more sensitive and faster-responding sensors. Initially, it will produce small and later large quantum processors for a broad range of applications, for example simulations.

Quantum processors will initially be used to solve a few (yet important) special problems, but in the more distant future also for universal calculations. There’s actually no discernible obstacle to realizing quantum technologies. Increasingly complex systems are being devised. This includes the development and use of new, previously unavailable technologies and methods. As quantum technologies become more widely available, ideas for their use and applications will rapidly follow.

What far-ranging changes to society and economics do you expect from the second quantum revolution?

At first, such technologies will lead to expanded and improved computing applications, which will continuously advance improvements in the sciences. It’s difficult to predict how far-reaching the impact on society and economics will be. Changes brought about by the development of the laser were similarly unpredictable. In the early 1960s, the laser was still seen as a solution to an unknown problem. Today, just over fifty years later, lasers have become an indispensable part of our lives. I expect quantum technologies to develop along similar lines.

Will the second quantum revolution only benefit highly developed countries or regions in the world that invest heavily in cutting-edge research?

Ultimately, everyone will benefit. But like all developments, only those countries and regions will really derive a benefit – including profit in the commercial sense – that play a role in the development and refinement of these technologies early on. We will need cutting-edge research for some decades to come, and this entails a degree of financial, institutional and above all personnel commitment in order to tap the potential of quantum technologies.

Rainer Blatt
Member of the Council for the Lindau Nobel Laureate Meetings
Scientific Co-Chairman of the 66th Lindau Nobel Laureate Meeting
Institute for Experimental Physics, University of Innsbruck, Austria
Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Austria

Weitere Informationen:

http://www.lindau-nobel.org - Website
http://mediatheque.lindau-nobel.org - Mediatheque
http://blog.lindau-nobel.org - Blog

Gero von der Stein | idw - Informationsdienst Wissenschaft

More articles from Event News:

nachricht 2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)
15.02.2018 | Deutsche Gesellschaft für Materialkunde e.V.

nachricht Aachen DC Grid Summit 2018
13.02.2018 | Forschungscampus Flexible Elektrische Netze

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>