Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Partner countries of FAIR accelerator meet in Darmstadt and approve developments


Members of the international council of the future accelerator facility FAIR (Facility for Antiproton and Ion Research in Europe) and the supervisory board of the GSI Helmholtz Centre for Heavy Ion Research have responded very positively to current developments at FAIR and GSI. At their most recent meeting in Darmstadt, delegates of the nine partner countries who are realising the new large-scale research institution alongside Germany welcomed FAIR’s organisational restructuring and the further development of the strategy for the facility’s construction. They said they saw important milestones for the future in this strategy and expressed their full support for the plans.

Following the FAIR Council’s decision in late September 2015 on the overall scope of the FAIR facility, the management team in Darmstadt was able to begin intensive work on defining the orientation and framework conditions of the FAIR project.

The result is a new overall structure that merges the GSI Helmholtz Centre for Heavy Ion Research and FAIR GmbH at organisational level. An important part of this process is establishing a specific project structure for realising the FAIR facility that integrates the engineering and building work, the development and construction of the accelerator, and the scientific experiments themselves. The research objectives were also defined and ranked.

The management team presented the research programme for the coming years at the Darmstadt site. This was met with great approval by the FAIR Council and the GSI supervisory board. The programme represents a major step forward with regard to the future research at FAIR and offers excellent research opportunities in the period until FAIR goes into operation.

Scientists are already able to make use of the existing GSI accelerators, which have undergone significant improvements for their future use as pre-accelerators for FAIR and will receive further technical upgrades.

Scientists also already have access to the first measuring devices made especially for FAIR: these detectors are high-tech developments that form the basis for globally unique experiments. The promise of exciting new research possibilities is already enabling researchers to generate enthusiasm for FAIR among junior scientists.

FAIR will be one of the largest and most complex accelerator facilities in the world. The centrepiece of the facility is a ring accelerator with a circumference of 1,100 metres. Engineers and scientists are working in international partnership to advance new technological developments in a number of areas – such as information technology and superconductor technology.

Around 3,000 scientists from all over the world will be able to conduct top-level research at FAIR. Their outstanding experiments will generate new fundamental insights into the structure of matter and the development of the universe.

Alongside Germany, FAIR’s partner countries are Finland, France, India, Poland, Romania, Russia, Slovenia and Sweden. The United Kingdom is an associated partner.

Weitere Informationen: More about the new international accelerator facility FAIR

Dr. Markus Bernards | idw - Informationsdienst Wissenschaft

Further reports about: FAIR GSI Ion building work future research information technology research programme

More articles from Event News:

nachricht #IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017
14.10.2016 | GESIS - Leibniz-Institut für Sozialwissenschaften

nachricht Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus
14.10.2016 | Leibniz-Institut für Agrarentwicklung in Transformationsökonomien (IAMO)

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>