Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016

Members of the international council of the future accelerator facility FAIR (Facility for Antiproton and Ion Research in Europe) and the supervisory board of the GSI Helmholtz Centre for Heavy Ion Research have responded very positively to current developments at FAIR and GSI. At their most recent meeting in Darmstadt, delegates of the nine partner countries who are realising the new large-scale research institution alongside Germany welcomed FAIR’s organisational restructuring and the further development of the strategy for the facility’s construction. They said they saw important milestones for the future in this strategy and expressed their full support for the plans.

Following the FAIR Council’s decision in late September 2015 on the overall scope of the FAIR facility, the management team in Darmstadt was able to begin intensive work on defining the orientation and framework conditions of the FAIR project.

The result is a new overall structure that merges the GSI Helmholtz Centre for Heavy Ion Research and FAIR GmbH at organisational level. An important part of this process is establishing a specific project structure for realising the FAIR facility that integrates the engineering and building work, the development and construction of the accelerator, and the scientific experiments themselves. The research objectives were also defined and ranked.

The management team presented the research programme for the coming years at the Darmstadt site. This was met with great approval by the FAIR Council and the GSI supervisory board. The programme represents a major step forward with regard to the future research at FAIR and offers excellent research opportunities in the period until FAIR goes into operation.

Scientists are already able to make use of the existing GSI accelerators, which have undergone significant improvements for their future use as pre-accelerators for FAIR and will receive further technical upgrades.

Scientists also already have access to the first measuring devices made especially for FAIR: these detectors are high-tech developments that form the basis for globally unique experiments. The promise of exciting new research possibilities is already enabling researchers to generate enthusiasm for FAIR among junior scientists.

FAIR will be one of the largest and most complex accelerator facilities in the world. The centrepiece of the facility is a ring accelerator with a circumference of 1,100 metres. Engineers and scientists are working in international partnership to advance new technological developments in a number of areas – such as information technology and superconductor technology.

Around 3,000 scientists from all over the world will be able to conduct top-level research at FAIR. Their outstanding experiments will generate new fundamental insights into the structure of matter and the development of the universe.

Alongside Germany, FAIR’s partner countries are Finland, France, India, Poland, Romania, Russia, Slovenia and Sweden. The United Kingdom is an associated partner.

Weitere Informationen:

http://www.fair-center.de/index.php?id=1&L=1 More about the new international accelerator facility FAIR

Dr. Markus Bernards | idw - Informationsdienst Wissenschaft

Further reports about: FAIR GSI Ion building work future research information technology research programme

More articles from Event News:

nachricht International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open
20.03.2017 | Leibniz-Institut für ökologische Raumentwicklung e. V.

nachricht CONNECT 2017: International congress on connective tissue
14.03.2017 | Universität Ulm

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>