Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International Conference on Crystal Growth in Freiburg

09.02.2017

Crystals for Superconduction, Quantum Computing and High Efficiency Solar Cells

From March 8-10, 2017, an International Conference on Crystal Growth is to be held in Freiburg under the auspices of the German Association of Crystal Growth DGKK and the Swiss Society for Crystallography SGK-SSCR. The conference, jointly organized by the Fraunhofer Institute for Solar Energy Systems ISE, the Crystallography department of the Institute of Earth and Environmental Sciences at the University Freiburg and the University of Geneva, is to be held in the seminar rooms of the Chemistry Faculty of the University of Freiburg. Furthermore, the Young DGKK will hold a seminar for young scientists at Fraunhofer ISE on March 7, 2017.


Crystals have applications in a wide variety of fields. Photo of a multicrystalline silicon wafer, which serves as the basis of a solar cell.

©Fraunhofer ISE

“Whether for mobile communication, computers or LEDs, crystalline materials are key components of our modern lifestyle,” says Dr. Stephan Riepe, group head in the Department of Silicon Materials at Fraunhofer ISE.

“Crystal growth has a long tradition and today is still far from becoming obsolete. Materials with special crystalline structure are being developed for applications in high-temperature superconductors through to low-loss power transmission. Artificial diamonds are a favorite choice for building quantum computers. At the conference, the production of silicon, III-V semiconductors and most currently perovskite layers for cost-effective high efficiency tandem solar cells will also be discussed.”

In Freiburg, a close cooperation exists between the Fraunhofer Institutes and the University of Freiburg. For example, at Fraunhofer ISE a doctoral thesis of the University of Freiburg was carried out which investigated how impurities can be minimized during multicrystalline silicon production. In the production process, liquid silicon is melted in a quartz crucible and subsequently solidified.

Similar to flour’s function when sprinkled in a baking form, silicon nitride powder acts as a separating agent between the crucible and the silicon. Here the aim is to reduce impurities on the scale of parts per billion, or ppb, to achieve the highest solar cell efficiencies. On a regular basis, student and doctoral degree theses are carried out to address such questions.

Basic research on crystal growth in space has a long tradition at the Crystallography department at the University of Freiburg. In space, growth processes are investigated which can then be used to optimize the production of crystalline material on the earth for applications in applied science and the industry.

Crystals have also played a major role in the efficiency records achieved by Fraunhofer ISE: For example, a four-junction solar cell based on crystalline gallium-arsenide achieved a present record efficiency of 46 %. The silicon multicrystalline solar cell, the work horse in the photovoltaics industry, hit a record high of 20.4 % efficiency and a photovoltaic inverter based on silicon carbide components reached an all-time efficiency of over 99 % for the conversion of dc power from a PV array into ac power for the grid.

Conference Website

https://www.dkt2017.de

Weitere Informationen:

https://www.ise.fraunhofer.de/en.html

Karin Schneider | Fraunhofer-Institut für Solare Energiesysteme ISE

More articles from Event News:

nachricht ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing
07.03.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht EGU General Assembly: Meeting programme online, provisional press conference topics
02.03.2017 | European Geosciences Union

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

EGU General Assembly: Meeting programme online, provisional press conference topics

02.03.2017 | Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

 
Latest News

Detailed chemical structure of P22 virus resolved

08.03.2017 | Life Sciences

New Technologies for Astronomical Research

08.03.2017 | Physics and Astronomy

The Protective Layer of Prehistoric Land Plants

08.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>