Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016

Fraunhofer ISE Presents New Research Results at the Berlin ENERGY DAYS

The Fraunhofer Institute for Solar Energy Systems ISE presents its newest results on grid-supportive buildings and urban quarters at the Berlin ENERGY DAYS on April 12, 2016. Prof. Dr. Hans-Martin Henning, deputy director of Fraunhofer ISE, will give a talk demonstrating how building mass and technical storage help to smooth out the fluctuations from renewable energy. This presentation is part of a workshop, organized by Fraunhofer ISE, Fraunhofer IBP and RWTH Aachen.


This laboratory building at Fraunhofer ISE is equipped with cold water storage and serves as a demonstrator for grid-supportive operation.

©Fraunhofer ISE

More information about the workshop can be found under the following link: http://www.energietage.de/details/va/2016-504.html

The number of renewable energy installations continues to expand worldwide. In Germany the installed power of wind and photovoltaics increased from 54 GW in 2011 up to 83 GW in 2014/15, a value equivalent to the peak load in the German electricity grid.

With an increasing share of renewables in the energy supply, times occur when there is a surplus of renewable electricity, but also when peak load power plants, fired by fossil fuels with high emissions, are needed to produce electricity. Since electricity is difficult to store, the best case is to maintain the balance between electricity production and consumption. There are several options for flexibility such as demand-side operation of conventional power plants and CHP systems; load management where consumers in households, businesses and industry are temporarily shut-down; short term storage; and, as a measure in the medium to long term, the production of synthetic chemical energy carriers (Power-to-Gas/Power-to-Liquid) using surplus renewable electricity.

When the total building performance conforms to the targeted load management goals, the building is called “grid-supportive.” “We are researching three basic approaches to increase the grid-supporting capacity of buildings,” says Dr. Doreen Kalz, group head of Building Analysis and Energy Concepts at Fraunhofer ISE. “Firstly, one can switch between different heating and cooling supplies, e. g. between an electric heat pump and a gas-fired condensing boiler.

The second approach uses energy storage technologies such as battery storage or thermal heat storage. At times of surplus electricity, for example, an electric heat pump can be used to produce heat which is sent to a buffer storage tank. In the third approach, the surplus heat or cold is stored in the thermal mass of the building itself, whereby the massive building components are thermally activated by so-called “Thermally Active Building Component Systems,” or TABS.

In order to compare the grid-supporting properties of different buildings, the researchers developed two parameters: an absolute and a relative Grid Support Coefficient (GSCabs and GSCrel). The GSCabs weighs the electricity consumption with a grid-based reference parameter, i. e. an electricity price signal. The GSCrel translates this amount to a scale of -100 (worst case) to +100 (best case) which indicates the present potential for optimization.

An evaluation of 52 existing plants showed that the majority of systems today operate with either a negative or neutral impact on the grid. For two systems that were analyzed in more detail, the grid-support factor could be increased to a value of +70 by implementing a new control strategy that considers the electricity price on the EEX electricity market.

In the workshop taking place at the Berlin ENERGY DAYS, the results from four years of research in the “Netzreaktive Gebäude” project (Grid-supportive buildings) will be presented. The project was supported by the German Federal Ministry for Economic Affairs and Energy (BMWi). Project partners are the Fraunhofer Institute for Solar Energy Systems ISE, the Fraunhofer Institute for Building Physics IBP in Kassel and the E.ON Energy Research Center of RWTH Aachen.

The researchers conclude: To achieve grid-supportive operation, it is important to initially define one’s individual goal: for example, high revenues from electricity sales, provision of standby energy, ease the burden of the distribution grid or increase the percentage of renewables in the fulfillment of demand.

Grid-support does not stop at buildings: Urban quarters, city districts and regions can also be of service to the grid. Ultimately grid-support is a Europe-wide issue that is being addressed by the International Energy Agency IEA in the Working Group Annex 67. At Fraunhofer ISE, the work on this topic is being continued in the new “FlexControl” project, also sponsored by the federal ministry BMWi. The new project makes a contribution towards ensuring that a stable electricity grid and the continual growth of renewable energy capacity go hand in hand.

Background Material:

The study “What Will the Energy Transformation Cost? Pathways for Transforming the German Energy System by 2050”: https://www.ise.fraunhofer.de/en/publications/studies/what-will-the-energy-trans...

Project “Netzreaktive Gebäude” (Grid-supportive buildings): http://www.netzreaktivegebaeude.de/ (only in German)

ANNEX67: Energy Flexible Buildings: http://www.iea-ebc.org/projects/ongoing-projects/ebc-annex-67/

Weitere Informationen:

http://www.ise.fraunhofer.de/en
http://www.ibp.fraunhofer.de/en.html
https://www.eonerc.rwth-aachen.de/cms/~dmud/E-ON-ERC/?lidx=1

Karin Schneider | Fraunhofer-Institut für Solare Energiesysteme ISE

More articles from Event News:

nachricht Expert meeting “Health Business Connect” will connect international medical technology companies
20.04.2017 | IVAM Fachverband für Mikrotechnik

nachricht Wenn der Computer das Gehirn austrickst
18.04.2017 | Hochschule für Gestaltung Schwäbisch Gmünd

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>