Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Worldwide Success of Tyrolean Wastewater Treatment Technology

27.05.2016

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70 wastewater treatments plants around the world. A new partnership has now been formed between the environmental engineers in Innsbruck and the US-utility company DC Water for jointly refining and marketing the technology.


Photographic details of the drum-screen used for the enrichment of the bright-red granular anammox bacteria in the improved system for CONtinous DEAmmonification (conDEA™) in Strass, Austria.

ARAconsult


The Blue Plains wastewater treatment plant in Washington DC produces electricity in the sludge digestion plant (green). The ammonia return load is eliminated by the new built DEMON®-system (red).

DC Water

In Blue Plains in Washington, DC, USA, the new partner is currently building the world’s largest deammonification system in a wastewater treatment plant. Similar systems are currently being planned and built in Stockholm, Singapore, Yokohama and Jerusalem.

In northern Europe, the DEMON®-system has been implemented by long-time license holder Sweco, formerly Grontmij, and this partnership is going to be extended with a new contract. Co-developer Bernhard Wett explains the reason why so many major cities have expressed interest in this technology:

“The DEMON®-system is particularly interesting for wastewater treatment plants that have reached their capacity-limit because with this technology the treatment of ammonium-rich wastewater can be intensified significantly.”

Energy-efficient, environmentally friendly and globally successful

The DEMON®-technology utilizes a biological process for removing large quantities of ammonium from wastewater. “However, it is technically difficult to implement the process because the bacteria grow extremely slowly and are very sensitive,” says Bernhard Wett.

“We successfully implemented the first system in a wastewater treatment plant in Strass, in the Zillertal valley in Austria. This treatment plant is the first energy self-sufficient wastewater treatment plant globally. Therefore, it can be considered as a prototype of our system, which has attracted interest around the world.”

This innovative technology uses 60 percent less energy than conventional systems and, moreover, it doesn’t require any chemicals. “The development and marketing of the patent has been a huge success story for the University of Innsbruck,” underlines Tilmann Märk, Rector of the University of Innsbruck.

“With this newly established US-cooperation, it is possible to further refine the technology, which will guarantee its success in the future.”

Contact:
Dr. Bernhard Wett
ARAconsult
Tel.: +43 660 8114722
Email: wett@araconsult.at

Weitere Informationen:

https://www.dcwater.com/
http://www.sweco.nl
http://www.uibk.ac.at

Dr. Christian Flatz | Universität Innsbruck

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>