Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Worldwide Success of Tyrolean Wastewater Treatment Technology

27.05.2016

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70 wastewater treatments plants around the world. A new partnership has now been formed between the environmental engineers in Innsbruck and the US-utility company DC Water for jointly refining and marketing the technology.


Photographic details of the drum-screen used for the enrichment of the bright-red granular anammox bacteria in the improved system for CONtinous DEAmmonification (conDEA™) in Strass, Austria.

ARAconsult


The Blue Plains wastewater treatment plant in Washington DC produces electricity in the sludge digestion plant (green). The ammonia return load is eliminated by the new built DEMON®-system (red).

DC Water

In Blue Plains in Washington, DC, USA, the new partner is currently building the world’s largest deammonification system in a wastewater treatment plant. Similar systems are currently being planned and built in Stockholm, Singapore, Yokohama and Jerusalem.

In northern Europe, the DEMON®-system has been implemented by long-time license holder Sweco, formerly Grontmij, and this partnership is going to be extended with a new contract. Co-developer Bernhard Wett explains the reason why so many major cities have expressed interest in this technology:

“The DEMON®-system is particularly interesting for wastewater treatment plants that have reached their capacity-limit because with this technology the treatment of ammonium-rich wastewater can be intensified significantly.”

Energy-efficient, environmentally friendly and globally successful

The DEMON®-technology utilizes a biological process for removing large quantities of ammonium from wastewater. “However, it is technically difficult to implement the process because the bacteria grow extremely slowly and are very sensitive,” says Bernhard Wett.

“We successfully implemented the first system in a wastewater treatment plant in Strass, in the Zillertal valley in Austria. This treatment plant is the first energy self-sufficient wastewater treatment plant globally. Therefore, it can be considered as a prototype of our system, which has attracted interest around the world.”

This innovative technology uses 60 percent less energy than conventional systems and, moreover, it doesn’t require any chemicals. “The development and marketing of the patent has been a huge success story for the University of Innsbruck,” underlines Tilmann Märk, Rector of the University of Innsbruck.

“With this newly established US-cooperation, it is possible to further refine the technology, which will guarantee its success in the future.”

Contact:
Dr. Bernhard Wett
ARAconsult
Tel.: +43 660 8114722
Email: wett@araconsult.at

Weitere Informationen:

https://www.dcwater.com/
http://www.sweco.nl
http://www.uibk.ac.at

Dr. Christian Flatz | Universität Innsbruck

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>