Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wild Yaks - Shaggy Barometers of Climate Change

06.03.2015

New study reveals how a warming planet affects male and female yaks differently

Wild Yaks: Shaggy Barometers of Climate Change


Video: Climate Change Affecting Yak Distribution | WCS


Joel Berger/WCS

A WCS team studied wild yaks in Tibet to understand how they are impacted by climate change.

• New study reveals how a warming planet affects male and female yaks differently
• Study took place in Tibetan plateau atop the “Roof of the World”
• Authors compared historical data from last two centuries with current observations
• Findings may influence future conservation planning in this rapidly warming region
• Study appears in Nature Scientific Reports

A new study led by WCS (Wildlife Conservation Society), University of Montana, Qinghai Forestry Bureau, Keke Xili National Nature Reserve, and other groups finds that climate change and past hunting in the remote Tibetan Plateau is forcing female wild yaks onto steeper and steeper terrain.

Why? The authors say the key answer is snow, which females need for milk production to nurture their offspring. As the region warms – estimated at two-to-three-times faster than other parts of the planet – snow patches become more and more restricted often in steep post-glacial terrain.

Wild yaks are endangered and serve as living totems for the rugged Tibetan Plateau and the human cultures that live on the “roof of the world.”

The authors of the study, which appears in the March 2nd issue of the journal Nature Scientific Reports, include: Joel Berger of the University of Montana and WCS; George Schaller of Panthera; Ellen Cheng of Ugyen Wangchuck Institute for Conservation and Environment; Aili Kang and Lishu Li of WCS; and Michal Krebs and Mark Hebblewhite of the University of Montana.

While many scientists concerned with life at the planet’s edge use models to predict future change, the research team led by Dr. Joel Berger conducted ground-based field work during winter in the Keke Xili National Nature Reserve on the Tibetan Plateau. Camping in temperatures as cold as negative 24 degrees Fahrenheit when water is totally frozen and therefore unavailable to wildlife, the team found female yaks were 20 times more likely to be found adjacent to snow patches than male yaks.

In addition, the team analyzed observations of wild yaks extracted from some 60 expeditions of the Tibetan Plateau region from 1850–1925 – travels that included British, French, Swedish, German, Russian, and American explorers. Following these expeditions, wild yaks were widely slaughtered by poachers. Comparing historical records with recent data, the authors found that male and female wild yaks used similar habitat prior to the heavy poaching pressure that began in the 1930s. However, following this spike in hunting, females shifted to areas of steeper inclines suggesting greater sensitivity to hunting and a need to protect their offspring.

“What happens in the Keke Xili National Nature Reserve can provide valuable lessons as conservation planners prepare for similar climate change impact in other parts of the world,” said lead author Joel Berger of WCS and the University of Montana. “The twin findings – that the sexes of a cold-adapted species respond differently to modern climate change and long-past exploitation – indicate that effective conservation planning will require knowledge of the interplay between past and future if we will assure persistence of the region’s biodiversity.”

This study was made possible through the generous support of blue moon fund and the National Geographic Society Committee for Research and Exploration.

###

About the Wildlife Conservation Society (WCS)
MISSION: WCS saves wildlife and wild places worldwide through science, conservation action, education, and inspiring people to value nature. VISION: WCS envisions a world where wildlife thrives in healthy lands and seas, valued by societies that embrace and benefit from the diversity and integrity of life on earth. To achieve our mission, WCS, based at the Bronx Zoo, harnesses the power of its Global Conservation Program in more than 60 nations and in all the world’s oceans and its five wildlife parks in New York City, visited by 4 million people annually. WCS combines its expertise in the field, zoos, and aquarium to achieve its conservation mission. Visit: www.wcs.org ; http://www.facebook.com/TheWCS ; http://www.youtube.com/user/WCSMedia  Follow: @thewcs.

WCS in China: WCS began working on the Tibetan Plateau in the 1980s, and provided technical support for the creation of the massive Changtang reserve. Today WCS’s China Program works on: Amur tiger conservation in northeast China; Chinese alligator reintroduction in lower Yangtze River; combating illegal wildlife trade and trafficking in south China; and in 2013, initiated a pilot project to reduce demand in wildlife products.

Contact Information
CONTACT: STEPHEN SAUTNER: (1-718-220-3682; ssautner@wcs.org
JOHN DELANEY: (1-718-220-3275; jdelaney@wcs.org)

Stephen Sautner
Executive Director of Communications
ssautner@wcs.org
Phone: 718-220-3682

Stephen Sautner | newswise

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>