Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Who Will Come to Your Bird Feeder in 2075?

07.11.2014

The distribution of birds in the United States today will probably look very different in 60 years as a result of climate, land use and land cover changes.

Anew U.S. Geological Survey study predicts where 50 bird species will breed, feed and live in the conterminous U.S. by 2075. While some types of birds, like the Baird’s sparrow, will likely lose a significant amount of their current U.S. range, other ranges could nearly double. Human activity will drive many of these shifts. The study was published today in the journal PLOS ONE.

"Habitat loss is a strong predictor of bird extinction at local and regional scales," said Terry Sohl, a USGS scientist and the author of the report. "Shifts in species’ ranges over the next several decades will be more dramatic for some bird species than others."

Climate change will cause average temperatures to change by three degrees to seven degrees Fahrenheit by 2075, depending upon scenario and location within the conterminous U.S. Temperature increases will drive breeding ranges for many species to the north. Precipitation will increase in some regions and decline in others, resulting in substantial impacts on local and regional habitat.

Habitats for birds currently breeding in the far southern U.S., such as the desert-dwelling Gambel’s quail and cactus wren, will expand greatly by 2075 in the conterminous U.S. as a warming climate moves the overall range to the north. The chestnut-collared longspur, sharp-tailed grouse and gray partridge could all lose over 25 percent of their suitable breeding range in the northern U.S. as climate becomes more suitable in Canada for these species. The Baird’s sparrow may lose almost all of its current U.S. range.

Landscape changes resulting largely from human activity, including land use and land cover changes, will also significantly affect future U.S. bird distributions. The effects of landscape change will be more scattered, with very high loss of habitat at local and regional scales.

"Changing landscape patterns such as deforestation and urban growth are likely to have at least as large of an impact on future bird ranges as climate change for many species," Sohl said.

The new study used climate and landscape data to create and compare U.S. distribution maps of 50 bird species in 2001 and 2075. The maps for each species are available online.

The species that will either gain or lose more than 20 percent of their conterminous U.S. ranges as compared to 2001 are:

  • Gambel’s quail: 61.8 percent gain
  • Cactus wren: 54.1 percent gain
  • Scissor-tailed flycatcher: 46.4 percent gain
  • Gray vireo: 44.9 percent gain
  • Painted bunting: 38.5 percent gain
  • Anna’s hummingbird: 27.2 percent gain
  • Black-capped chickadee: 21 percent loss
  • Ferruginous hawk: 21.2 percent loss
  • Sora: 22.8 percent loss
  • Northern harrier: 24.7 percent loss
  • Bobolink: 24.9 percent loss
  • Short-eared owl: 26.2 percent loss
  • Vesper sparrow: 26.4 percent loss
  • Savannah sparrow: 27.2 percent loss
  • Sedge wren: 29 percent loss
  • Gray partridge: 35.6 percent loss
  • Sharp-tailed grouse: 44.8 percent loss
  • Chestnut-collared longspur: 54.1 percent loss
  • Baird’s sparrow: 90.8 percent loss

For more information on species distribution modeling, please visit the USGS Earth Resources Observation and Science Center website.

Contact Information:
U.S. Department of the Interior, U.S. Geological Survey
Office of Communications and Publishing
12201 Sunrise Valley Dr, MS 119
Reston, VA 20192

Marisa Lubeck | EurekAlert!
Further information:
http://www.usgs.gov/newsroom/article.asp?ID=4049&from=rss_home#.VFytPWF0zct

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>