Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What happens to the NAO? - Recent statistical analyses reveal loss of predictability

04.11.2014

A recently published article in the journal „frontiers in ecology and evolution“ by Joachim Dippner, Caroline Möller and Ingrid Kröncke showed by statistical analyses that the close coupling between climatic and biological data as it was valid for the period between 1977 – 2000 no longer is detectable in the following years.

The North Atlantic Oscillation (NAO), this interplay between Azores High and Icelandic Low, is decisively influencing the winter climate on the Northern Hemisphere. It is already known since the 1990s that there are four prevailing modes:

(1) a positive NAO phase, defined by an increased westdrift directing mild and humid air to Europe, (2) a negative NAO phase with strong conditions of easterly winds and cold winters in Europe as well as two blocking situations over (3) Scandinavia and (4) Western Europe.

Among the long series of meteorological readings, statistical analyses clearly reveal phases of consistent climatic regimes. Joachim Dippner and his co-authors have focused on three of them: a regime from 1977 to 1988 with NAO- predominant, a NAO+ regime from 1989 to 2000 as well as the following period until 2013. In parallel, they investigated the changes among the dominant species and taxonomic groups of the benthic macrofauna and the benthic community in the Southern part of the North Sea off Norderney.

The result shows that the shift between the two regimes NAO+ and NAO- also known as regime shift – is also reflected in changes within the benthos – the marine communities living on or in the seafloor.

After 2000, the picture changes considerably: a persistent NAO regime can no longer be detected. The authors name the NAO´s behavior chaotic. Simultaneously, abrupt changes occur in the benthic communities. They no longer can be related to any dominant NAO mode. Thus, future scenarios referring to the development of the ecosystems become increasingly difficult.

These findings were published under:
Dippner, J. W., C. Möller and I. Kröncke (2014). Loss of persistence of the North Atlantic Oscillation and its biological implication. Front. ecol. evol. 2: 57, doi:10.3389/fevo.2014.00057

Contact:
PD Dr. Joachim Dippner, Sektion Biologische Meereskunde, Leibniz-Institut für Ostseeforschung Warnemünde, Tel.: 0381 5197 229

Dr. Barbara Hentzsch, Öffentlichkeitsarbeit, Leibniz-Institut für Ostseeforschung Warnemünde, Tel.: 0381 5197 102

The IOW is a member of the Leibniz Association to which 89 research institutes and scientific infrastructure facilities for research currently belong. The focus of the Leibniz Institutes ranges from Natural, Engineering and Environmental Science to Economic, Social, and Space Sciences and to the humanities. The institutes are jointly financed at the state and national levels. The Leibniz Institutes employ a total of 17.200 people, of whom 8.200 are scientists, of which 3.300 are junior scientists. The total budget of the Institutes is more than 1.5 billion Euros. Third-party funds amount to approximately € 330 million per year. http://www.leibniz-gemeinschaft.de

Dr. Barbara Hentzsch | idw - Informationsdienst Wissenschaft

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>