Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Urban pollinators get the job done, SF State study finds

13.02.2015

Wild bees provide adequate pollination service to tomato plants in San Francisco, researchers find

Having trouble getting those fruits and vegetables in your backyard to grow? Don't blame the bees.


To artificially pollinate some of the tomato plants floral clusters, researchers used tuning forks to reproduce the frequency at which bees buzz, releasing pollen.

Credit: Drew Potter

A new study from San Francisco State University shows that native bees are able to provide adequate pollination service in San Francisco, despite the urban setting. And, in what appears to be good news for farmers in space-starved cities, the amount of pollination a plant received was driven not by how large the garden was, but how densely it was populated with flowers.

The research was published Jan. 15 in the journal Urban Ecosystems.

"What this shows is that just because you're in an urban setting doesn't mean that bees aren't providing important pollinator service, and not just honeybees," said Gretchen LeBuhn, a professor of biology at San Francisco State University and co-author of the study. "Our wild bees here are providing all the service you might need."

LeBuhn has extensively studied the decline of pollinators across North America and since 2008 has led the nation's largest citizen science project focused on pollinators, which conducts an annual census of bees.

According to the City of San Francisco, more than 1,700 volunteers tend nearly nine acres of land managed by the Recreation and Park Department through its Community Gardens Program, with 750 additional residents on a waitlist to join the program. Previous research had shown that "pollinator deserts" such as the Central Valley of California lack the amount of bees needed to provide adequate service to plants compared with wildland areas, but LeBuhn and Drew Potter (M.S. '13), a graduate student at the time, wanted to know if the same trend applied in urban areas.

To find out, they placed sets of three tomato plants in gardens throughout San Francisco for two weeks, with each plant divided into four sets of "floral clusters" that received a different pollination treatment. One cluster was covered to prevent bees from visiting and limited only to self-pollination, one was left open and available to be pollinated by native bees, and two were covered but received artificial pollination. At the end of the two weeks, the plants were returned to the SF State greenhouse so their tomatoes could grow under uniform conditions.

The plants that were available for bee pollination significantly outperformed the control group, producing more and larger tomatoes. In addition, the open plants did just as well and in some cases better than the artificially pollinated plants, indicating that urban farmers do not need to "import" honeybees to pollinate their gardens, as wild bees can do the job.

"We were actually surprised," LeBuhn said. "We expected to find that there was not adequate pollinator service in the city, but in fact we actually found bees do quite well. Anybody who grows tomatoes in San Francisco knows it's really hard to grow them here, but our data says it's not because of the pollinators."

Even more surprising, neither the size of the garden nor the amount of green space in the surrounding area impacted the amount of pollinator service a plant received. Instead, the key factor was the "floral resource density," or the abundance of flowers present within the garden in which the tomato plant was located. The more densely flowers were grown within each garden, the higher the yield of tomatoes.

"This is good news in San Francisco, because we have very limited space for urban agriculture," said Potter, now an environmental consultant. "Small gardens with lots of flowers are enough to attract bees."

That goes against many farmers' conventional wisdom that increasing the number of flowers in a garden will drive bees away from food-producing plants, LeBuhn said. The research shows that pollination is not a "zero-sum" game -- bees will visit both the crop plants and the flowers intended to attract them.

Although the results could have major sustainability implications -- much of the food consumed in urban areas is grown hundreds of miles away and then shipped in -- LeBuhn says further studies are needed to compare the full cost of growing food in an urban environment versus rural areas such as the Central Valley.

Her latest citizen science effort, The Great Pollinator Habitat Project, helps participants make their backyard garden, local park or green space more friendly to pollinators by evaluating the space and offering improvements designed to attract more bees. Increasing habitat is critical, as the population of pollinators in North America -- which are involved in the production of roughly one-third of the food we eat -- is declining rapidly, a phenomenon scientists call "colony collapse disorder."

"We are at a point right now where pollinator service is adequate, but if the native bee populations are not sustained, we could see a significant decline in urban agriculture," LeBuhn said.

Media Contact

Jonathan Morales
jmm1@sfsu.edu
415-338-1743

 @SFSU

http://www.sfsu.edu 

Jonathan Morales | EurekAlert!

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>