Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Urban pollinators get the job done, SF State study finds

13.02.2015

Wild bees provide adequate pollination service to tomato plants in San Francisco, researchers find

Having trouble getting those fruits and vegetables in your backyard to grow? Don't blame the bees.


To artificially pollinate some of the tomato plants floral clusters, researchers used tuning forks to reproduce the frequency at which bees buzz, releasing pollen.

Credit: Drew Potter

A new study from San Francisco State University shows that native bees are able to provide adequate pollination service in San Francisco, despite the urban setting. And, in what appears to be good news for farmers in space-starved cities, the amount of pollination a plant received was driven not by how large the garden was, but how densely it was populated with flowers.

The research was published Jan. 15 in the journal Urban Ecosystems.

"What this shows is that just because you're in an urban setting doesn't mean that bees aren't providing important pollinator service, and not just honeybees," said Gretchen LeBuhn, a professor of biology at San Francisco State University and co-author of the study. "Our wild bees here are providing all the service you might need."

LeBuhn has extensively studied the decline of pollinators across North America and since 2008 has led the nation's largest citizen science project focused on pollinators, which conducts an annual census of bees.

According to the City of San Francisco, more than 1,700 volunteers tend nearly nine acres of land managed by the Recreation and Park Department through its Community Gardens Program, with 750 additional residents on a waitlist to join the program. Previous research had shown that "pollinator deserts" such as the Central Valley of California lack the amount of bees needed to provide adequate service to plants compared with wildland areas, but LeBuhn and Drew Potter (M.S. '13), a graduate student at the time, wanted to know if the same trend applied in urban areas.

To find out, they placed sets of three tomato plants in gardens throughout San Francisco for two weeks, with each plant divided into four sets of "floral clusters" that received a different pollination treatment. One cluster was covered to prevent bees from visiting and limited only to self-pollination, one was left open and available to be pollinated by native bees, and two were covered but received artificial pollination. At the end of the two weeks, the plants were returned to the SF State greenhouse so their tomatoes could grow under uniform conditions.

The plants that were available for bee pollination significantly outperformed the control group, producing more and larger tomatoes. In addition, the open plants did just as well and in some cases better than the artificially pollinated plants, indicating that urban farmers do not need to "import" honeybees to pollinate their gardens, as wild bees can do the job.

"We were actually surprised," LeBuhn said. "We expected to find that there was not adequate pollinator service in the city, but in fact we actually found bees do quite well. Anybody who grows tomatoes in San Francisco knows it's really hard to grow them here, but our data says it's not because of the pollinators."

Even more surprising, neither the size of the garden nor the amount of green space in the surrounding area impacted the amount of pollinator service a plant received. Instead, the key factor was the "floral resource density," or the abundance of flowers present within the garden in which the tomato plant was located. The more densely flowers were grown within each garden, the higher the yield of tomatoes.

"This is good news in San Francisco, because we have very limited space for urban agriculture," said Potter, now an environmental consultant. "Small gardens with lots of flowers are enough to attract bees."

That goes against many farmers' conventional wisdom that increasing the number of flowers in a garden will drive bees away from food-producing plants, LeBuhn said. The research shows that pollination is not a "zero-sum" game -- bees will visit both the crop plants and the flowers intended to attract them.

Although the results could have major sustainability implications -- much of the food consumed in urban areas is grown hundreds of miles away and then shipped in -- LeBuhn says further studies are needed to compare the full cost of growing food in an urban environment versus rural areas such as the Central Valley.

Her latest citizen science effort, The Great Pollinator Habitat Project, helps participants make their backyard garden, local park or green space more friendly to pollinators by evaluating the space and offering improvements designed to attract more bees. Increasing habitat is critical, as the population of pollinators in North America -- which are involved in the production of roughly one-third of the food we eat -- is declining rapidly, a phenomenon scientists call "colony collapse disorder."

"We are at a point right now where pollinator service is adequate, but if the native bee populations are not sustained, we could see a significant decline in urban agriculture," LeBuhn said.

Media Contact

Jonathan Morales
jmm1@sfsu.edu
415-338-1743

 @SFSU

http://www.sfsu.edu 

Jonathan Morales | EurekAlert!

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New bioimaging technique is fast and economical

21.08.2017 | Medical Engineering

Silk could improve sensitivity, flexibility of wearable body sensors

21.08.2017 | Materials Sciences

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>